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ABSTRACT: An elegant result of Ryan, gives a characterisation of weakly
compact operators from a Banach space A into ¢o(X), the space of null sequences
in a Banach space X. It would be a useful tool if the analogue of Ryan’s result
were valid when ¢y(X) is replaced by ¢(X), the space of convergent sequences
in X. This seems plausible and has been assumed true by some authors. Un-
fortunately it is false in general; Ylinen has produced a counterexample. But
when A is a C*-algebra, or, more generally, the dual of A is weakly sequentially
complete we show that the desired extension of Ryan’s result does hold. The
latter result turns out to be ‘best possible’.
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INTRODUCTION

The origin of this paper stems from observing that some results on non-
commutative, finitely additive vector measures ( i.e. weakly compact operators
from a C*-algebra to a Banach space) do not depend on the domain being a
C*-algebra but are essentially Banach space results.

Let A and X be Banach spaces and let (T;,)(n = 1,2...) be a sequence of
weakly compact operators mapping A into X. For each z € A** let (T*2)(n =
1,2...) be a Cauchy sequence. Since, for each n, T, is weakly compact, the
range of 7** is in X. By the Uniform Boundedness Theorem there is a bounded
operator T# : A** — X such that lim,_ T2 = T#2 for each z in A**. Tt
would be natural to expect T# to be weakly compact but, in general, this is
false. This follows from the following example constructed by Ylinen [6].

In Proposition 2.1 [6], A = I* = X. For each n, T, : [* — ! is defined by
T.(z1, 22, ..., Tk, ...) = (T1,Z2, ..., 2, 0,0,...). Then each T;, is weakly compact
(because its range is finite dimensional). Ylinen proves that (7)*z)(n = 1,2...)
converges for each z in the dual of [*° but the pointwise limit of the sequence
of operators (T,,)(n = 1,2...) is not weakly compact.

However if A is a C*-algebra then there does exist a weakly compact operator
T : A+— X such that lim,_,. T*z = T**z for each z in A**. This is an
immediate consequence of Corollary 3.3 [1]. In this note we show that a positive
result is also obtained if A* is weakly complete. (We recall that the dual of a
C*-algebra is always weakly complete.) We shall also see that, in a sense made
precise here, the latter result is ‘best possible’.



Ryan [4] characterised weakly compact operators from a Banach space A
into ¢o(X), the space of null sequences in a Banach space X; see Propostion 2.4
below. When ¢o(X) is replaced by ¢(X), the space of convergent sequences in
X, the natural extension of Ryan’s characterisation does not hold, in general.
But when X* is weakly (sequentially) complete then we show, in Section 2, that
Ryan’s characterisation can be generalised successfully by applying the results
we obtain in Section 1. This can then be applied to underpin some fundamental
work on weak compactness and multi-linear operators on Banach spaces [3].

1. CONVERGENT SEQUENCES OF WEAKLY COMPACT OP-
ERATORS

Let us recall that a Banach space Z is said to be weakly complete if, whenever
(zn)(n = 1,2...) is a sequence in Z such that (¢z,)(n = 1,2...) is a Cauchy
sequence for every ¢ in Z*, then there exists z in Z such that ¢z, — ¢z for
every ¢ in Z*. Some authors use the term weakly sequentially complete for the
same property.

THEOREM 1.1 Let A be a Banach space such that A* is weakly complete.
Let X be a Banach space and let (T,)(n = 1,2...) be a sequence of weakly
compact operators from A into X. Let (T*z)(n = 1,2...) be a Cauchy sequence
for each z in A**. Then there exists a weakly compact operator T such that
[|(T** — T*)z|| — O for each z in A**.

PROOF: Since T), is weakly compact, T* maps A** into X. Let T#z =
limT*z for each z in A**. Then, by the Uniform Boundedness Theorem, T#
is a bounded linear operator from A** into X. Let T be the restriction of T#
to A.

Fix ¢€ X*. Then, for each z € A**,

lim, oo (T}*z,¢) = <T#z,¢>.

So limy, e (2,T5¢) = (T#2,6). So (T;¢)(n = 1,2...) is a weakly Cauchy
sequence in A*. By the hypothesis that A* is weakly complete, it follows that
there exists a unique a€ A* such that <z,a> = <T#z, ¢> for all z in A**.

All that is now needed is to show that T** = T#. Since this has been a
source of error in the past we wish to avoid being too glib and so give a detailed
elementary argument.

Let (z:) be a net in A** which converges to 0 in the o(A**, A*)-topology. So
<z, a> — 0. Thus <T#z,¢> — 0 for each ¢ in X*. So T# is a continuous
map of A**, equipped with the weak*-topology, to X equipped with the weak
topology. Since the norm closed unit ball of A** is weak* compact, the image
of the unit ball of A**under the map T# is weakly compact. Hence T#, and its
restriction to A, T, is weakly compact. Thus, by Lemma VI.2.3. and Theorem
VI.4.2 of [2], T** is weak* to weak continuous from A** to X. By Goldstine’s
Theorem, see Theorem V.4.5 [2], the norm closed unit ball of A is weak*-dense
in the norm closed unit ball of A** . Hence T# = T**.[]



REMARK Let A be a C*-algebra then its dual is the predual of a von
Neumann algebra and so, by Corollary III. 5.2 [5], the dual of A is weakly
complete. Hence Theorem 1.1 applies whenever A is a C*-algebra.

It turns out that Theorem 1.1 is ‘best possible’. To make this claim precise
it is convenient to introduce the following definition:

DEFINITION 1.2 Let X be a Banach space. A Banach space A is said to
have the weak compactness stability property with respect to X, if, given any
sequence of weakly compact operators (T),)(n = 1,2...), each mapping A into
X, and with (T;7*z)(n = 1, 2...) a Cauchy sequence for each z in A**, then there

exists a weakly compact operator T' such that lim, .1y *z = T**z for each z
in A**.

PROPOSITION 1.3 Let A be a Banach space with the weak compactness

stability property with respect to some non-zero Banach space X. Then A* is
weakly complete.
PROOF: Let (¢,)(n = 1,2...) be a weakly Cauchy sequence in A*. Then,
for each z in A**, lim,,_,o, < z,¢, > exists. By the Uniform Boundedness
Theorem, there exists a bounded linear functional /7 on A**such that 1% (2) =
limy, oo < 2,6, > for each z in A**.

Since X is a non-zero Banach space it contains a non zero element xg. For
each n, let T}, : A —— X be defined by

T.(a) = (a, d,,) zo.

Then T, has one dimensional range and so is (weakly) compact. Furthermore
T (2) = (z,¢,,) xo for each z in A**. It now follows from the weak compactness
stability property for X that there exists a weakly compact operator 7" mapping
A into X, such that

T*(2) = limpy o0 Ty (2) = limpy o0 (2, $,,) 20 = ¥ (2)20 for each z in A**.

Since T is weakly compact then, as remarked in the proof of Theorem 1.1,
T** is weak* to weak continuous as a map from A** to X. Thus ¥ is a weak*
continuous linear functional on A**. So, by Theorem V.3.9 [2], ¥ may be
identified with an element of A*. Hence (¢,,)(n = 1,2...) is weakly convergent.
Thus A* is weakly complete. J

COROLLARY 1.4 Let A be a Banach space. Then the following conditions
are equivalent:
(i) A* is weakly complete.
(i) A has the weak compactness stability property with respect to some Banach
space of non-zero dimension.
(iii) A has the weak compactness stability property with respect to every Banach
space X.



PROOF: By Theorem 1.1, (i) implies (iii). Trivially (iii) implies (ii). By Propo-
sitionl.3 (ii) implies (i). O

2. EXTENDING RYAN’S LEMMA

For any Banach space X, let ¢(X) be the Banach space of all (norm) con-
vergent sequences in X, equipped with the supremum norm. Those elements
of ¢(X) which are sequences in X converging (in norm) to 0, form a closed
subspace which is denoted by cq(X).

For each positive integer n, let T,, be a bounded linear operator from a
Banach space A into a Banach space X. Let lim7T,a exist for each a in A.
Then (T,,a)(n = 1,2...)is a vector in ¢(X). Let T, be the linear map from A
into X defined by Twa = limT,a for each a in A. We use T to denote the
operator from A to ¢(X) associated with the sequence (7,)(n = 1,2...) and
defined by T(a) = (Tha)(n = 1,2...). By applying the Uniform Boundedness
Theorem we see that T, and T are both bounded linear operators. Conversely,
every bounded operator from A into ¢(X) arises in this way from a sequence of
operators from A into X.

Let us recall [4] that, for 1 < p < oo, and X an arbitrary Banach space,
[P(X) is the Banach space whose points are the sequences x = (z,,) (n = 1,2...)
in X for which 7% ||z, ||? < co.The norm of x is defined to be (3°7° [ENIDRES
Also [°°(X) is defined to be the Banach space whose points are all bounded
sequences in X and where the norm of x =(x,) (n = 1,2...) is defined to be
sup{||zn|| : 1 < n}.

Given ¢ = (¢g,¢q,...) in I1(X*) and x = (z,) (n = 1,2...) in ¢(X), let
Ly(x) = ¢po(limzy,) + 307 | (@, ¢,,). Then straightforward calculations show
that Lg is a bounded linear functional on ¢(X) and its norm is >~ ||é,]|-
Furthermore the map ¢ —— Lg can be shown to be a surjective isometry of
I1(X*) onto ¢(X)*. It follows from the remarks in [4] that the dual of I*(X*) can
be identified in a natural way with {°°(X**). Thus ¢(X)** can be identified with
1°°(X**). Let f be the canonical embedding of X into X**. Then a sequence
(z)(n=1,2...) in ¢(X) is mapped to (lim bz, fa1, jza, ...) in 1%°(X**).

LEMMA 2.1 Let T be a bounded operator from a Banach space A into ¢ (X)
and let T,,(n = 1,2...) and Ty, be the operators from A into X associated with T
as above. Fiz L in c(X)*. Thenlet ¢ = (¢, ¢1,-..) be the corresponding element
of I1(X*). Then, for each z € A**, (T**z,L) = T2z, ¢0) + >y (Ti*2, ¢,,)-

PROOF: For each a € A,

<Taa L> = <T00a’ ¢O> + Znoozl <Tnaa ¢n>

Now let z be in the unit ball of A**. Then, by Goldstine’s Theorem (see
above) there is a net (a;) in the unit ball of A which converges weak* to
z. Then Ta; — T**z in the weak* topology of ¢(X)**. So (Ta: L) —
(T**z, L) .Similarly, for each N,



(Tootr, do) + Son_y (Tnar, 6,) — (T2, dg) + Som_ ) (T2, ¢,,).

Choose € > 0. Choose N large enough to ensure that || T|[ Y07 v ||, <
€. Then for any w in the unit ball of A**,

135w (T57w, @) | < T3 s [l < 2. From this it follows by
routine arguments that (T**z, L) = (T2, ¢g) + >y (T2, ¢,). O

We have seen that ¢(X)**can be identified with {°°(X**). When this iden-
tification is made appropriately, we have:

COROLLARY 2.2 For each z in A**we have
T(2) = (T2, 172, T3z, ..., Tz, ...) .

The following lemma is, in essence, proved by Ylinen [6]. For the convenience
of the reader, we give a brief proof here as an application of Corollary 2.2.

LEMMA 2.3 Let A and X be Banach spaces and let T be a weakly compact
operator from A into ¢(X). Let (T,,)(n = 1,2...) be the sequence of operators
from A into X such that T(a) = (Tha)(n = 1,2...)for each a in A. Then each
T, is weakly compact. Also T, the pointwise limit of (T,)(n = 1,2...), is
weakly compact. Furthermore im T,7*(z) = T2 z for each z in A**.

PROOF: We recall that the product of a bounded operator and a weakly
compact operator is weakly compact. Let 7,, be the canonical projection of ¢(X)
onto the nt"coordinate. Then T}, = 7, T. Hence T}, is weakly compact. Let 7
be the operator which maps (a1,as,...) in ¢(X) to lima,. Then To = 7T
and so is also weakly compact.

Since T is weakly compact, T**maps into (the canonical image of) ¢(X).
So(Tz, T 2, T * 2, ..., T *z, ...) is a convergent sequence in X with limit 7 z.
O

PROPOSITION 2.4 (Ryan [4]) Let A and X be Banach spaces. Let (T,,)(n =
1,2...) be a sequence of bounded operators from A into X. Let ||T,z|| — 0 for
each z in A. Then T is a weakly compact operator from A into co(X) if, and
only if, each T, is weakly compact and ||T)*z|| — 0 for each z in A**. When
T is weakly compact, T**(z) = (T *(2))(n = 1,2...) for each z in A*™*.

Proposition 2.4 is a special case of the following result of Ylinen [6]:

PROPOSITION 2.5 Let A and X be Banach spaces and let T be a bounded
operator from A into ¢(X). Let (T,,)(n = 1,2...) be the sequence of operators
from A into X such that T (a) = (Tpa)(n = 1,2...) for each a in A. Then T is
weakly compact if and only if the following conditions are satisfied:

(i) For each n, T,, is weakly compact.

(ii) For each z in A**, Um T *(z) exists.

(iil) The operator Too : A — X is weakly compact, where Teo(a) = lim T, (a)
for each a in A.



PROOF: By Lemma 2.3, when T is weakly compact the three conditions are
satisfied.

Now suppose that the conditions are satisfied. So, for each z in A**, (iii) im-
plies that 7%z is in X and (i) implies that T,*z is in X for each n. Hence by (ii),
(T2, T 2, Ty* 2z, ..., Tz, ...) is in ¢(X). Hence, by Corollary 2.2, T**maps
A** into ¢(X). So T is weakly compact. OJ

THEOREM 2.6 Let X be any Banach space. Let A be a Banach space whose
dual space, A*, is weakly complete. Let (T,,)(n =1,2...) be a sequence of weakly
compact operators from A into X such that (T;*(z))(n = 1,2...) is a Cauchy
sequence for each z in A**. Then T is a weakly compact operator from A into
e(X).

PROOF: Because the dual of A is weakly complete, Theorem 1.1 implies
the existence of a weakly compact operator Too : A — X such that T,7*(z) —
T3¥(z) for each z in A**. So conditions (i), (ii) and (iii) of Proposition 2.5 are
satisfied. O

REMARK: If A*is not weakly complete then it follows from Proposition 1.3
that we can find a sequence of weakly compact operators, (T3,)(n = 1,2...), each
mapping A into ¢, such that (T,*(z))(n = 1,2...) is a convergent sequence for
each z in A** but T, is not weakly compact. (Where To(a) = lim T}, (a) for each
a in A.) It then follows from Proposition 2.5 that T is not weakly compact. So
the hypothesis that A*is weakly complete is essential for the validity of Theorem
2.6.
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