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ABSTRACT: An elegant result of Ryan, gives a characterisation of weakly
compact operators from a Banach space A into c0(X), the space of null sequences
in a Banach space X. It would be a useful tool if the analogue of Ryan�s result
were valid when c0(X) is replaced by c(X), the space of convergent sequences
in X. This seems plausible and has been assumed true by some authors. Un-
fortunately it is false in general; Ylinen has produced a counterexample. But
when A is a C�-algebra, or, more generally, the dual of A is weakly sequentially
complete we show that the desired extension of Ryan�s result does hold. The
latter result turns out to be �best possible�.
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INTRODUCTION
The origin of this paper stems from observing that some results on non-

commutative, �nitely additive vector measures ( i.e. weakly compact operators
from a C�-algebra to a Banach space) do not depend on the domain being a
C*-algebra but are essentially Banach space results.
Let A and X be Banach spaces and let (Tn)(n = 1; 2:::) be a sequence of

weakly compact operators mapping A into X. For each z 2 A�� let (T ��n z)(n =
1; 2:::) be a Cauchy sequence. Since, for each n, Tn is weakly compact, the
range of T ��n is in X. By the Uniform Boundedness Theorem there is a bounded
operator T# : A�� 7�! X such that limn!1 T ��n z = T#z for each z in A��. It
would be natural to expect T# to be weakly compact but, in general, this is
false. This follows from the following example constructed by Ylinen [6].
In Proposition 2.1 [6], A = l1 = X: For each n, Tn : l1 7�! l1 is de�ned by

Tn(x1; x2; :::; xk; :::) = (x1; x2; :::; xn; 0; 0; :::). Then each Tn is weakly compact
(because its range is �nite dimensional). Ylinen proves that (T ��n z)(n = 1; 2:::)
converges for each z in the dual of l1 but the pointwise limit of the sequence
of operators (Tn)(n = 1; 2:::) is not weakly compact.
However if A is a C�-algebra then there does exist a weakly compact operator

T : A 7�! X such that limn!1 T ��n z = T ��z for each z in A��. This is an
immediate consequence of Corollary 3.3 [1]. In this note we show that a positive
result is also obtained if A� is weakly complete. (We recall that the dual of a
C�-algebra is always weakly complete.) We shall also see that, in a sense made
precise here, the latter result is �best possible�.
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Ryan [4] characterised weakly compact operators from a Banach space A
into c0(X), the space of null sequences in a Banach space X; see Propostion 2.4
below. When c0(X) is replaced by c(X), the space of convergent sequences in
X, the natural extension of Ryan�s characterisation does not hold, in general.
But when X� is weakly (sequentially) complete then we show, in Section 2, that
Ryan�s characterisation can be generalised successfully by applying the results
we obtain in Section 1. This can then be applied to underpin some fundamental
work on weak compactness and multi-linear operators on Banach spaces [3].

1. CONVERGENT SEQUENCES OFWEAKLY COMPACT OP-
ERATORS
Let us recall that a Banach space Z is said to be weakly complete if, whenever

(zn)(n = 1; 2:::) is a sequence in Z such that (�zn)(n = 1; 2:::) is a Cauchy
sequence for every � in Z�, then there exists z in Z such that �zn ! �z for
every � in Z�. Some authors use the term weakly sequentially complete for the
same property.

THEOREM 1.1 Let A be a Banach space such that A� is weakly complete.
Let X be a Banach space and let (Tn)(n = 1; 2:::) be a sequence of weakly
compact operators from A into X. Let (T ��n z)(n = 1; 2:::) be a Cauchy sequence
for each z in A��. Then there exists a weakly compact operator T such that
jj(T �� � T ��n )zjj ! 0 for each z in A��.
PROOF: Since Tn is weakly compact, T ��n maps A�� into X. Let T#z =

limT ��n z for each z in A��. Then, by the Uniform Boundedness Theorem, T#

is a bounded linear operator from A�� into X. Let T be the restriction of T#

to A.
Fix �2 X�. Then, for each z 2 A��;

limn!1 hT ��n z; �i =


T#z; �

�
:

So limn!1 hz; T �n�i =


T#z; �

�
. So (T �n�)(n = 1; 2::.) is a weakly Cauchy

sequence in A�: By the hypothesis that A� is weakly complete, it follows that
there exists a unique �2 A� such that <z; �> = <T#z; �> for all z in A��.
All that is now needed is to show that T �� = T#. Since this has been a

source of error in the past we wish to avoid being too glib and so give a detailed
elementary argument.
Let (zt) be a net in A�� which converges to 0 in the �(A��; A�)-topology. So

<zt; �> ! 0. Thus <T#zt; �> ! 0 for each � in X�. So T# is a continuous
map of A��, equipped with the weak*-topology, to X equipped with the weak
topology. Since the norm closed unit ball of A�� is weak* compact, the image
of the unit ball of A��under the map T# is weakly compact. Hence T#, and its
restriction to A, T , is weakly compact. Thus, by Lemma VI.2.3. and Theorem
VI.4.2 of [2], T �� is weak* to weak continuous from A�� to X. By Goldstine�s
Theorem, see Theorem V.4.5 [2], the norm closed unit ball of A is weak*-dense
in the norm closed unit ball of A�� . Hence T# = T ��:�
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REMARK Let A be a C�-algebra then its dual is the predual of a von
Neumann algebra and so, by Corollary III. 5.2 [5], the dual of A is weakly
complete. Hence Theorem 1.1 applies whenever A is a C�-algebra.

It turns out that Theorem 1.1 is �best possible�. To make this claim precise
it is convenient to introduce the following de�nition:

DEFINITION 1.2 Let X be a Banach space. A Banach space A is said to
have the weak compactness stability property with respect to X, if, given any
sequence of weakly compact operators (Tn)(n = 1; 2:::), each mapping A into
X, and with (T ��n z)(n = 1; 2:::) a Cauchy sequence for each z in A��, then there
exists a weakly compact operator T such that limn!1T

��
n z = T ��z for each z

in A��.

PROPOSITION 1.3 Let A be a Banach space with the weak compactness
stability property with respect to some non-zero Banach space X. Then A� is
weakly complete.
PROOF: Let (�n)(n = 1; 2:::) be a weakly Cauchy sequence in A�. Then,
for each z in A��, limn!1 < z; �n > exists. By the Uniform Boundedness
Theorem, there exists a bounded linear functional  # on A��such that  #(z) =
limn!1 < z; �n > for each z in A��.
Since X is a non-zero Banach space it contains a non zero element x0. For

each n, let Tn : A 7�! X be de�ned by

Tn(a) = ha; �nix0:

Then Tn has one dimensional range and so is (weakly) compact. Furthermore
T ��n (z) = hz; �nix0 for each z in A��. It now follows from the weak compactness
stability property for X that there exists a weakly compact operator T mapping
A into X, such that

T ��(z) = limn!1 Tn(z) = limn!1 hz; �nix0 =  #(z)x0 for each z in A��.

Since T is weakly compact then, as remarked in the proof of Theorem 1.1,
T �� is weak* to weak continuous as a map from A�� to X. Thus  # is a weak*
continuous linear functional on A��. So, by Theorem V.3.9 [2],  # may be
identi�ed with an element of A�. Hence (�n)(n = 1; 2:::) is weakly convergent.
Thus A� is weakly complete. �

COROLLARY 1.4 Let A be a Banach space. Then the following conditions
are equivalent:
(i) A� is weakly complete.
(ii) A has the weak compactness stability property with respect to some Banach
space of non-zero dimension.
(iii) A has the weak compactness stability property with respect to every Banach
space X.
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PROOF: By Theorem 1.1, (i) implies (iii). Trivially (iii) implies (ii). By Propo-
sition1.3 (ii) implies (i). �

2. EXTENDING RYAN�S LEMMA
For any Banach space X, let c(X) be the Banach space of all (norm) con-

vergent sequences in X, equipped with the supremum norm. Those elements
of c(X) which are sequences in X converging (in norm) to 0, form a closed
subspace which is denoted by c0(X).
For each positive integer n, let Tn be a bounded linear operator from a

Banach space A into a Banach space X. Let limTna exist for each a in A.
Then (Tna)(n = 1; 2:::)is a vector in c(X). Let T1 be the linear map from A
into X de�ned by T1a = limTna for each a in A. We use T to denote the
operator from A to c(X) associated with the sequence (Tn)(n = 1; 2:::) and
de�ned by T(a) = (Tna)(n = 1; 2:::). By applying the Uniform Boundedness
Theorem we see that T1 and T are both bounded linear operators. Conversely,
every bounded operator from A into c(X) arises in this way from a sequence of
operators from A into X.
Let us recall [4] that, for 1 � p < 1, and X an arbitrary Banach space,

lp(X) is the Banach space whose points are the sequences x =(xn) (n = 1; 2:::)

in X for which
P1

1 jjxnjjp <1:The norm of x is de�ned to be (
P1

1 jjxnjjp)
1=p.

Also l1(X) is de�ned to be the Banach space whose points are all bounded
sequences in X and where the norm of x =(xn) (n = 1; 2:::) is de�ned to be
supfjjxnjj : 1 � ng:

Given � = (�0; �1; :::) in l1(X�) and x = (xn) (n = 1; 2:::) in c(X); let
L�(x) = �0(limxn) +

P1
n=1 hxn; �ni. Then straightforward calculations show

that L� is a bounded linear functional on c(X) and its norm is
P1

n=0 jj�njj.
Furthermore the map � 7�! L� can be shown to be a surjective isometry of
l1(X�) onto c(X)�. It follows from the remarks in [4] that the dual of l1(X�) can
be identi�ed in a natural way with l1(X��). Thus c(X)�� can be identi�ed with
l1(X��). Let \ be the canonical embedding of X into X��. Then a sequence
(xn)(n = 1; 2:::) in c(X) is mapped to (lim \xn; \x1; \x2; :::) in l1(X��).

LEMMA 2.1 Let T be a bounded operator from a Banach space A into c (X)
and let Tn(n = 1; 2:::) and T1 be the operators from A into X associated with T
as above. Fix L in c(X)�. Then let � = (�0; �1; :::) be the corresponding element
of l1(X�). Then, for each z 2 A��; hT��z; Li = hT ��1 z; �0i+

P1
n=1 hT ��n z; �ni.

PROOF: For each a 2 A,

hTa; Li = hT1a; �0i+
P1

n=1 hTna; �ni.

Now let z be in the unit ball of A��. Then, by Goldstine�s Theorem (see
above) there is a net (at) in the unit ball of A which converges weak* to
z. Then Tat ! T��z in the weak* topology of c(X)��. So hTat; Li !
hT��z; Li :Similarly, for each N ,
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hT1at; �0i+
PN

n=1 hTnat; �ni ! hT ��1 z; �0i+
PN

n=1 hT ��n z; �ni.

Choose " > 0. Choose N large enough to ensure that jjTjj
P1

n=N+1 jj�njj �
": Then for any w in the unit ball of A��,
jj
P1

n=N+1 hT ��n w; �ni jj � jjTjj
P1

n=N+1 jj�njj � ". From this it follows by
routine arguments that hT��z; Li = hT ��1 z; �0i+

P1
n=1 hT ��n z; �ni. �

We have seen that c(X)��can be identi�ed with l1(X��). When this iden-
ti�cation is made appropriately, we have:

COROLLARY 2.2 For each z in A��we have

T��(z) = (T ��1 z; T ��1 z; T ��2 z; :::; T ��n z; :::) .

The following lemma is, in essence, proved by Ylinen [6]. For the convenience
of the reader, we give a brief proof here as an application of Corollary 2.2.

LEMMA 2.3 Let A and X be Banach spaces and let T be a weakly compact
operator from A into c(X). Let (Tn)(n = 1; 2:::) be the sequence of operators
from A into X such that T(a) = (Tna)(n = 1; 2:::)for each a in A. Then each
Tn is weakly compact. Also T1, the pointwise limit of (Tn)(n = 1; 2:::), is
weakly compact. Furthermore limT ��n (z) = T ��1 z for each z in A��.
PROOF: We recall that the product of a bounded operator and a weakly

compact operator is weakly compact. Let �n be the canonical projection of c(X)
onto the nthcoordinate. Then Tn = �nT. Hence Tn is weakly compact. Let �1
be the operator which maps (a1; a2; :::) in c (X) to lim an. Then T1 = �1T
and so is also weakly compact.
Since T is weakly compact, T��maps into (the canonical image of) c(X).

So(T ��1 z; T ��1 z; T ��2 z; :::; T ��n z; :::) is a convergent sequence in X with limit T ��1 z.
�

PROPOSITION 2.4 (Ryan [4]) Let A and X be Banach spaces. Let (Tn)(n =
1; 2:::) be a sequence of bounded operators from A into X. Let jjTnzjj ! 0 for
each z in A. Then T is a weakly compact operator from A into c0(X) if, and
only if, each Tn is weakly compact and jjT ��n zjj ! 0 for each z in A��. When
T is weakly compact, T��(z) = (T ��n (z))(n = 1; 2:::) for each z in A

��.

Proposition 2.4 is a special case of the following result of Ylinen [6]:

PROPOSITION 2.5 Let A and X be Banach spaces and let T be a bounded
operator from A into c(X). Let (Tn)(n = 1; 2:::) be the sequence of operators
from A into X such that T (a) = (Tna)(n = 1; 2:::) for each a in A. Then T is
weakly compact if and only if the following conditions are satis�ed:
(i) For each n, Tn is weakly compact.
(ii) For each z in A��, limT ��n (z) exists.
(iii) The operator T1 : A 7�! X is weakly compact, where T1(a) = limTn(a)

for each a in A.
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PROOF: By Lemma 2.3, when T is weakly compact the three conditions are
satis�ed.
Now suppose that the conditions are satis�ed. So, for each z in A��, (iii) im-

plies that T ��1 z is inX and (i) implies that T ��n z is inX for each n. Hence by (ii),
(T ��1 z; T ��1 z; T ��2 z; :::; T ��n z; :::) is in c (X). Hence, by Corollary 2.2, T��maps
A�� into c(X). So T is weakly compact. �

THEOREM 2.6 Let X be any Banach space. Let A be a Banach space whose
dual space, A�, is weakly complete. Let (Tn)(n = 1; 2:::) be a sequence of weakly
compact operators from A into X such that (T ��n (z))(n = 1; 2:::) is a Cauchy
sequence for each z in A��. Then T is a weakly compact operator from A into
c(X).
PROOF: Because the dual of A is weakly complete, Theorem 1.1 implies

the existence of a weakly compact operator T1 : A 7�! X such that T ��n (z)!
T ��1 (z) for each z in A

��. So conditions (i), (ii) and (iii) of Proposition 2.5 are
satis�ed. �

REMARK: If A�is not weakly complete then it follows from Proposition 1.3
that we can �nd a sequence of weakly compact operators, (Tn)(n = 1; 2:::), each
mapping A into c, such that (T ��n (z))(n = 1; 2:::) is a convergent sequence for
each z in A�� but T1 is not weakly compact. (Where T1(a) = limTn(a) for each
a in A.) It then follows from Proposition 2.5 that T is not weakly compact. So
the hypothesis that A�is weakly complete is essential for the validity of Theorem
2.6.
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