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1 Introduction

In recent times there has been significant interest in ascertaining means by which one
may identify (and quantify) the amount of information contained in entities ranging from
simple statements [6] to scientific theories [11]. In this area the term “information” has
been most frequently been used in the context of syntactic structures in the Mathematical
Theory of Communication (MCT) '. A more meaningful theory was presented by Bar Hil-
lel and Carnap [2] where the meaning of propositions is also taken into account. However,
the truth of the propositions was not seen as being of fundamental importance; hence
this may be viewed as a Theory of Weakly Semantic Information (TWSI) [8]. It is well
known that TWSI gives rise to a paradox that limits its usefulness (the Bar-Hillel/Carnap
paradox, (BCP).

A major contribution to the field has recently been provided by Luciano Floridi in
the form of a Theory of Strongly Semantic Information (TSSI) [7, 8]. In this theory a
statement only counts as information if it is true (the Veridicality thesis). This approach
has led Floridi to posit a solution to the BCP.

In this paper I shall review Floridi’s TSSI (FTSSI) and present some (fairly minor)
criticisms and some modifications to the theory to make it more general and, in particular,
applicable to Model Based Reasoning [4, 9, 10]. The paper is structured as follows: in
the next section the BCP is summarised. This is followed by a review of FTSSI, then
in Section 4 I provide an analysis of the approach identifying a couple of weaknesses
and providing a possible solution. Next I return to assess how the generalised solution
relates to Floridi’s solution to the BCP. The paper ends with some suggestions to explore
its potential for assessing the information content of models in the context of Model-
based Reasoning and Philosophy of Modelling, with particular reference to Informational
(Computational) Philosophy of Science.

2 The Bar-Hillel Carnap Paradox

Floridi [8] provides a detailed analysis of the Bar-Hillel Carnap paradox as a grounding
for the TSSI; however, for the purposes of these notes a summary will suffice. As it
happens, there is an excellent summary on the website of the Society for the Philosophy
of Information [1] that, since I could not surpass it, I include in full here.

Shannon and Weaver defined information in terms of probability space distri-
bution. Yehoshua Bar-Hillel and Rudolf Carnap developed a related proba-
bilistic approach which sought to do justice to the problem of meaning, which
Shannon and Weaver had deliberately set aside. Their approach was based on
what is called the inverse relationship principle. According to this principle,
the amount of information associated with a proposition is inversely propor-
tional to the probability associated with that proposition. The core idea is
that the semantic content of p is measured as the complement of the a priori
probability of p,

!More commonly referred to by the misnomer “Information Theory” [13].



CONT(p) =1— P(p)

Where CONT is the semantic content of p (p could be a set of sentences,
events, situations or possible worlds). Crudely, CONT(p) is a measure of the
probability of p not happening, or not being true. This means that the less
probable or possible p is, the more semantic information p is assumed to be
carrying. Tautologies, like “all ravens are ravens” have to be true. So they are
assumed to carry no information at all. Since the probability that all ravens
are ravens is 1, P(p) is 1, so CONT(p) is 1-1, i.e. 0. By extension, we might
presume that contradictions — statements which describe impossible states or
whose probability is 0, such as “Alice is not Alice” — to contain the highest
amount of semantic information. Thus we seem to run into what has been
called the Bar-Hillel-Carnap paradox: the less likely a statement is, the greater
its informational content, until you reach a certain point at which, presumably,
the statement contains no information at all since it is [a contradiction].? As
Bar-Hillel and Carnap state:

“It might perhaps, at first, seem strange that a self-contradictory
sentence, hence one which no ideal receiver would accept, is regarded
as carrying with it the most inclusive information. It should, how-
ever, be emphasized that semantic information is here not meant
as implying truth. A false sentence which happens to say much is
thereby highly informative in our sense. Whether the information
it carries is true or false, scientifically valuable or not, and so forth,
does not concern us. A self-contradictory sentence asserts too much;
it is too informative to be true” (Bar-Hillel & Carnap, 1953, p. 229).

3 The Theory of Strongly Semantic Information

Having clearly located the details of BCP Floridi goes on to identify a number of criteria
and desiderata for progressing to a solution. We do not have space in this paper to
record all the details of the approach, so we will focus on the key points and issues. The
interested reader is referred to chapter 5 of Floridi’s book [8] for the details.

Floridi borrows from situation logic the term “infon” (symbolised as o) “to refer to
discrete items of factual semantic information qualifiable in principle as true or false,
irrespective of their semiotic code and physical implementation”. He states three criteria
for information equivalence and from these identifies that the best combination (at least
to start with) is “an analysis of the quantity of semantic information in ¢ including a
reference to its alethic value. This is TSSI”3.

After this he identifies three desiderata for a theory of semantic information; it should:

D.1: avoid any counterintuitive inequality comparable to BCP;

2The original says “is false”, which is not sufficient condition for containing no information.

3Note that this includes a notion of equiprobability that is based on classical probability that may need
to be revised in the context of modelling. Also, there is an at least tacit aim that qualitative equivalence
should eventually be included.



D.2: treat the alethic value of o not as a supervenient but as a necessary feature of
semantic information, relevant to the quantitative analysis;

D.3: extend a quantitative analysis to the whole family of information-related concepts:
semantic information vacuity and inaccuracy, informativeness, misinformation(what
is ordinarily called ‘false information’), disinformation.

These three desiderata are fundamental. The first two are unproblematic; the third
is unproblematic in the abstract, but the way it is unpacked may give rise to some issues
(see section 4). And it this unpacking that Floridi proceeds to develop.

The outcomes of this development merit more discussion; and since they have differ-
ent aspects and sightly different structure, they will be dealt with in the two following
subsections.

Throughout the discussion Floridi makes use of an example universe, F, consisting of
all possible worlds arising from the conjunction of a set of basic infons. These are made
up from two predicates and three constants, which means E has 64 possible worlds (for
further details see [8] Pp 111ff).

3.1 Degrees of Inaccuracy

The model universe is maximal and so must contain the true case. Since the infons are
conjunctions, any infon, o, other than that representing the actual state of affairs will be
false. However, different infons will contain a greater or lesser number of components that
are false, and this gives rise the idea of degree of falsity or inaccuracy. It is straightforward
then to create a measure of the distance from the true state of affairs: the ratio of the
number of false components to the length of the infon. More formally:

—0(0) = —e(0)/l(0) (1)

Here [ is the length of the infon (in this case 6), e is the number of erroneous conjuncts
in the inforn, and ¢ is the distance of the infon from the true state of affairs (the negative
sign refers to the fact that it deals with degrees of error); and spans the range 0 (matching
the actual situation) to -1 (the infon contains no truth).

Floridi identifies five conditions for a suitable metric of this type, all or which are
straightforwardly unproblematic here. (For details of these see Floridi [8], page 120.)

3.2 Degrees of Vacuity

The other aspect of distance from the actual state of affairs arises when the infon is true by
abstraction. The most extreme example of this is a tautology, which includes the actual
situation, but is uninformative due to its being true in all circumstances. This would
have a distance of +1. In order to fill in the gap between these two extremes Floridi
introduced the semi-dual.* By this means a set of classes are identified which contain all
the infons with the same number of disjunctions. Each member of the class will have the
same number of ways of being true given that some components of the infon are false. So

4A semi-dual is an infon in which the operators are changed from conjunction to disjunction, but the
components are not negated. For example a contradiction is the semi-dual of a tautology.



in this case the distance is the ratio of the number of ways of being true, n, to the size of
the universe® s'. More formally:

(o) =n/s (2)

3.3 Degrees of Informativeness

Now that a suitable metric has been defined for these two situations Floridi is able to use
it to provide a measure of the informativeness, ¢, of an infon. Floridi proposes that the
distance be viewed as spanning the range [-1, +1], with the actual state of affairs at the
origin, the LHS being the degree of inaccuracy (hence the negative value) and the RHS
the degree of vacuity.

The fact that the BCP arises, at least in part from the inverse relation between infor-
mation content and probability in that formulation suggests that a relation that identifies
the state of affairs as having maximum informativeness and the two extremae (tautology
and total falsity), zero informativeness.

Floridi proposes a quadratic relation as meeting a number of criteria that he considers
mandatory for a measure of informativeness to possess. Most of these are unobjectionable,
but a couple appear more problematic and less than optimal (the issues surrounding these
will be dealt with in section 4.2 below). The precise formulation used is:

(o) =1—19%*0) (3)

This representation (shown in Figure 1) allows him potentially to provide a solution
to the BCP and create measures for vacuity and quantities of semantic information.

4  Some possible weaknesses in FTSSI

It is clear that Floridi has taken a major step forward in the understanding of semantic
information and the various desirable measures associated therewith. However, there are
a couple of weaknesses® in the current formulation that limit its applicability. These
weaknesses are not all of the same importance with respect to the research programme
I am undertaking, and some are not important at all from the perspective of Floridi’s
original motivation; nonetheless they all merit critical analysis.

4.1 Constraints on the equation for Informativeness

The first issue regards the form of the relation for informativeness.

As noted above, Floridi identified a quadratic as a suitable equation to relate distance
and informativeness. He also states that “If possible, the equation should satisfy ...6
constraints, derived from the five necessary conditions for a satisfactory metric” [8], Pp
124 ff. He believes the quadratic (and no other) equation meets all these constraints.
This is true in that at least one of the constraints applies only to quadratics. However

SHere s represents the number of values an infon can take (in this case two: {T, F}), and [ is the
length of the infon
SPerhaps “weaknesses” is too strong, but there are some improvements that can be made.
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Figure 1: The degree of informativeness (after Floridi [8]). Here, t(c) = 1 — 9%(0)

it is not obvious that two of the constraints are appropriate (as one might expect one of
those is the one just mentioned) so we shall look at these more closely (the others are
straightforwardly correct and will not be dealt with further for the moment).

The two constraints are:

(E.5) a small variation in 9(o) results in a substantial variation in ¢(o).

(E.6) the marginal information function (MI) is a linear function.

Taking (E.5) at face value, it is not clear that a quadratic meets this criterion. It is
only at the extremae of the curve that a small variation in ¥ gives rise to a substantial
variation in ¢; near the origin the converse is the case. However, even if we were to accept
E.5 as it stands, a quadratic is not the only curve that meets this criterion: arguably the
arc of a circle meets it better.

On the other hand with regard to E.5 Floridi states:

Formula [E.5] is meant to satisfy the requirement according to which, the lower
(o) is, the smaller is the possible increase in the relative amount of vacuity
or inaccuracy carried by o. [8] p124

This is not straightforward to interpret with regard to a single criterion. (E.5) refers
to ¢ which is a function of ¢ and 1J; and the the measures of inaccuracy and vacuity are
different: the former being based on the number of false conjuncts whereas the latter is
based on classes of infons. In fact, with the focus here on small change, it is possible to
read the explanation as being in conflict with E.5.7

Turning now to E.6. The justification provided is:

"It is possible that there is a typo in E.5 and it should read “a small variation in ¥(c) does not result
in a substantial variation in ¢(0)”. Nonetheless, the comments above would still stand, albeit the other
way round with the small change only being true near the origin.



Formula [(E.6)] is justified by the requirement that, a priori, all atomic mes-
sages ought to be assigned the same potential degreee of informativeness and
therefore, although [21]® indicates that the graph of the model has a variable
gradient, the rate at which (o) changes with respect to change in (o) should
be assumed to be uniform, continuous and linear. [8] p124 — 125.

There is an intuitive attractiveness about this; however, there are a couple of comments
that can be made. Firstly, it is not clear the the relation in question captures this
requirement. The positive part of the equation relates informativeness to a set of o
possibilities; and the distance is an abstraction operation which achieves its distance via
the increase in the number of disjunctions in the infon (the number of atomic infons
remaining constant). Secondly, this has a form analogous to the idea that the whole
cannot be greater that the sum of the part: which is, at least, debatable.

4.2 The status of a Contradiction

One of, if not the, reasons for the development of TSSI was to provide a solution to
the BCP. That being the case, having a clear and coherent means of calculating the
informativeness of a contradiction is crucial, and it is this that the relation in Equation 3
seeks to provide.

Floridi [8] identifies a number of criteria related to the measure of degree of inaccuracy;
the key one being:

(M.3)  [F-awo = flo) = -1 (4)

That is, “if (it is estimated that) o is false and conforms to no possible situation, then
o is a contradiction and it is assigned the maximum degree of negative discrepancy” ([8]
p 120). This is as it should be and so the calculation of inaccuracy should naturally give
this answer for a contradiction.

The next criterion is stated as:

(MA4)  |Fwyo— (0> fo)>—1) (5)

meaning “if (it is estimated that) o is contingently false, then it is assigned a degree of
discrepancy with a value less than 0 but greater than —1 (degrees of semantic inaccuracy)”
(8] p 120).

Unfortunately the example used to illustrate and explain these principles, with the
distance metric given in equation 2, appears to be in violation of both these criteria.

The example used is a conjunction of six atomic infons giving a universe, E, of sixty
four possible worlds/situations. The distance from the actual world, w, is calculated from
equation 2 and the results are shown in Table 1

It can be seen from column 4 of the table that for the class Inacg the degree of
inaccuracy (i.e. the distance from w, 9) is equal to -1. Since the only member of Inacg is
a contingent falsehood it is in violation of (M.4), which states that all contingent falsehood
must have an inaccuracy strictly greater than -1.

3[8] has “[27]”



number of erroneous  classes of  cardinality of degrees of degrees of

atomic messages in g; Inaccuracy Inac; inaccuracy informativeness

—9(0) € Inac; (o) € Inac;
1 Inacy 6 -1/6 ~ 0.972
2 Inacsy 15 -1/3 ~ (.888
3 Inacs 20 -1/2 =0.75
4 Inacy 14 -2/3 ~ 0.555
5 Inacs 7 -5/6 ~ 0.305
6 Inacg 1 -1 0

Table 1: Classes of inaccuracy in E (from Floridi [8])

On the other hand, if we apply Equation 2 to a contradiction then we will find that
the inaccuracy is not equal to -1. This is because any contradiction must contain at least
one conjunct that is true, and so the degree of inaccuracy can never be -1 (in violation of
(M.3))! In fact for an infon containing n conjuncts the number of true conjuncts will lie
in the range from 1 to 7, and so ¢ will lie in the range % to 0.5.

In the light of both these issues we will need to find a more appropriate metric to
represent the inaccuracy of an infon. I address this in section 5.2.

4.3 The Information Space

It has already been noted that the distance metric used on the LHS and RHS of the
diagram representing degrees of informativeness (Figure 1) are not the same: different
criteria are used to calculate the distance.” On the LHS it is a straightforward ratio,
whereas on the RHS it is a class measure. As such it seems a little strange that Floridi
would use the same axis to represent both.

Another issue with this representation arises if we wish to use the informativeness
relation to represent the relationship between different information statements, or shifts
between infons (e.g. by means of abstraction). As an illustration consider the situation
where the infon (length six as in the original example) contains one false atomic state-
ment. In that case the informativeness would be -0.972. If we now abstract the infon, by
means of a single disjunction, it becomes true with an informativeness of +0.953. This
is discontinuous in the most basic sense: the single operation makes the informativeness
jump from negative to positive without passing through zero. And this jumping back
and forth wold continue as more falsehoods and disjunctions are gradually introduced to
the infon. This suggests that it is worth exploring to see if there is a representation and
relationship that better captures what Floridi is aiming for here.

To conclude this section: these issues lead one to believe that there are perhaps alter-
native ways to calculate the informativeness of an infon that may be better able to meet
(most of) the criteria Floridi identifies without the ensuing problems. We will explore
and expound some suggestions for this in the following section.

9As such these may also be in violation of some of the criteria for variables at a particular Level
of Abstraction. While the RHS and LHS may have the same Type, they cannot represent the same
Observable according to Floridi’s definitions.



5 A more general representation of TSSI

In the previous section we looked at a number of issues with the current version of the
Floridian Theory of Strongly Semantic Information (FTSSI). In this section we will explore
some ways in which these might be overcome and lead to a more general version of
the theory; in particular one that could utilised in assessing the information content of
computational (and possibly other) models of scientific systems/theories.

5.1 The Relation between Inaccuracy and Vacuity

As noted in Section 4.3 the LHS and RHS of the information space do not measure the
same thing. In addition they represent contradictory conditions (Truth and Falsehood).
The relation was presented in a spatial/ geometrical form, which suggests that it may be
dealt with in a manner common to geometrical relations.

One key aspect of representing relations that are incompatible spatially is that their
dot product should be zero. This is achieved by making the axes orthogonal. This is a
general approach; but since there may be some feeling that true and false can be realised
on a single axis since it is similar to moving from Right to Left relative to a point located
at an origin we can consider how this is handled in quantum theory [14]. There in, for
example, spin the concepts of left and right, up and down, and in and out are mapped
to a conceptual multidimensional space where “left” is orthogonal to “right” etc.!. This
representation has the form of a ‘unit circle’ which is useful because it suggests that
information can be represented by complex numbers of various forms, and is that bit
closer to the way ‘information’ (data) is represented in MCT.

With respect to the relation between error and vacuity on the information space, this
representation will permit the smooth movement through the space as the vacuity or error
changes without introducing any discontinuity.

The relation is shown schematically in Figure 2. Here we have to now include two
versions of the distance, ¥(¢): Jp(o) for the inaccuracy dimension, and ¥r(o) for the
vacuity dimension.!!

5.2 How to handle a Contradiction

We argued above (in Section 4.2) that the measure of inaccuracy in [8] failed to yield the
informativeness of a contradiction as zero, as required by (M.3). The question is, how
do we better represent the inaccuracy so that it meets all the constraints, in particular
(M.3) and (M.4). It appears to me that there are a few potential solutions: 1) To use
the cardinality of the error, 2) to sum the cardinality of the error, 3) make use of the
semi dual with respect to disjunction, and 4) make use of the semi-dual with respect to
erroneous components.

The first of these is given in column 3 of Table 1 from which it can be seen that it is
not monotonic, and therefore not suitable. The second is monotonic, but again does not

10This analogy to quantum physics will, I hope, prove useful in the depiction of model spaces and the
relation between models, but is beyond the scope of these notes.

U The form of the space shown in Figure 2 is polar, the construction of this and its relation to Floridi’s
original metrics is detailed in Appendix A.
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Figure 2: The distance metric space

yield the desired result for a contradiction (i.e. its distance is not maximal).

The third possibility is based on analogy to the semi-dual method applied to the
vacuity dimension by Floridi [8]. In that case all the conjuncts are true and the distance
is based on successive introduction of disjunctions (from 1 to [ — 1) and identifying the
number of ways the components have to change for the infon to become false. In the
present case the infon is false and the error is based on the successive introduction of false
components. The suggestion is to identify how many disjunctions are required to make
the infon true. Unfortunately, this does not solve the problem of a contradiction and has
the same drawbacks as the original solution (namely that a the contingent infon with all
element false will have an error distance of -1 and a contradiction won’t.)

That leaves the final possibility. Here the analogy with the vacuity case lies in accept-
ing that the components are successively false; but we keep the connectives as conjunc-
tions and seek to identify how many changes are required to make the infon true: but in
a slightly different way to that suggested by Floridi.

The error distance is defined by Floridi as e/l, where e it the number of erroneous
elements in the infon, and [ is the length of the infon. This assumes that the only relevant
factor is simply the number of erroneous elements (because the length is the only thing
that is seen as important). However, if we define the distance with respect to the total
universe then the maximum length will be 64 (rather than 6). In that case the error
should be measured as the number of steps needed to remove the error when it is viewed
as a number. In that case the distance to 0 (the actual state of affairs) will be 2¢ — 1.
This will make the error and vacuity measures more similar.

A (quite weak) analogy with physical measurement is: if we have 110 as the state we

10



are in, then how far is this from 000. If we treat it as “the number of wrong elements”
then the distances is 2/3. However, if we treat it as a (decimal) number, or say that it
has units (e.g metres) then it is clear that the steps to 000 have to go through all the
intermediate values (109, 108, ...), and so the distance is 110 units. In addition, if we
take the number of wrong elements then 110 and 011 are the same, but obviously very
different as a numerical distance.

Of particular importance is the fact that with this measure a contradiction always has
the maximum distance, i.e. 64/64 in Floridi’s example; and a contingently false infon will
always have a distance (/) greater than —1, as required by (M.3) and (M.4)!

The implementation of this also plays to the idea of semi-dual. On the vacuity side
the connectives are the number of disjunction and we see how many elements have to
be changed before the infon becomes false, In this case it the connectives remain as
conjunctions and we see how many elements have to change before it becomes true. The
similarity and symmetry should be obvious.

5.3 Constraints on the equation for Informativeness

Now that we have addressed the issues surrounding the relationship between inaccuracy
and vacuity, and the informativeness of a contradiction we can return to the constraints
(E.5) and (E.6) that affect the putative form of the equation for informativeness.

As noted in section 4.1 (E.5) is possibly better met by a circle. Now that we have iden-
tified that the unit circle captures the essential relation between inaccuracy and vacuity
this seems even more plausible. Of course we now have to represent the relation between
informativeness (¢) and distance () in three dimensions as an octant of a sphere(as shown
in Figure 3).

On the other hand it is still not clear what purpose (E.6) serves. The comments about
the marginal informational function may be true in some respects, but they do not appear
to be general enough. In fact in Floridi’s exposition it would only apply to the inaccuracy
side of the space; on the other side the distance is based on sets and subsets, so the
fact that each individual infon contains the same information is not relevant. Now, if we
accept that the distance for both inaccuracy and vacuity are of similar form, then (E.6)
adds nothing. In addition, Floridi’s approach makes the whole equal to the sum of the
parts, but if the focus is on the relata then it is entirely possible that the whole, from an
informational standpoint, is greater than the sum of the parts.!?

Therefore I propose that (E.6) be dropped as a criterion/constraint.

5.4 The extended Information Space

We are now in a position to put these things together and propose an improved version
of TSSI.

Since in this version the dimensions for inaccuracy and vacuity are orthogonal the
informativeness, ¢ of an infon must be a function of both ¥y and Y. In order to permit
the representation of information as a complex quantity, and to keep the relation to MCT

12A possible example is simple harnonic motion, where, for example using an inductor and capac-
itor, one can generate oscillatory motion when no such behaviour is manifested by either component
individually.
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as close as possible for purposes of analysis, we have proposed that a circular relation best
fits the bill. In this case that results in the the following formula for ¢(o):

2 2 1
o) = (1 = V7(0) = Vr(0))? (6)
This is one form of the equation for a sphere. Since we are only interested in that
portion where the s are positive, it is an octant of a sphere as depicted in Figure 3.

Figure 3: The informativeness of an infon

Following through on the steps followed by Floridi [8], the marginal information func-
tion over this space are the derivatives of the informativeness. In this case there are two
partial derivatives of Equation 6:

;;T _ agT (1 - #3(0) — 03(0))?]

—19T(0') . —19T(0')

T (1= 3 (0) — (o)t o)

Similarly,
o —Ip(0) _ —Ur(0)

e (1-03(0) - vh(o)F  i(0)
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It can be seen that in both these cases the result is in the form of a Tangent, as one
would expect.

The Information Content, Z, of an infon was defined by Floridi [8] as the integral of
the informativeness. However, he only used the vacuity side of the relation to calculate Z.
This would suggest that the inaccuracy contributed nothing to Z despite having non-zero
informativeness. It seems obvious that the information content of the correct infon will
have contributions from both inaccuracy and vacuity. This is easily calculated for the
information space as given in Figure 3: it is simply the volume of the octant.

Since the volume of a sphere is: %m"2, the Information Content (the volume of the
octant with r = 1) is:

1 4 s

The final calculation is that of the information content of a vacuous (or inaccurate)
statement. In [8], for a value of a for ¥, it is the area from a to 1 ([8], p126f); again
omitting any involvement from the inaccuracy part. For our information space, we can
identify a possible volume, as depicted in Figure 4.

In this case we exploit the relation between the informativeness of the infon, and the
number of false components and disjunctions it contains. For the example in [8], if there
are n false components then the infon must have n disjunctions in order to guarantee its
truth. This is captured by the contour lines in Figure 2. The information content for any
given distance is the volume of the octant remaining when the “plug” represented by the
relevant contour is removed.'* The expression for Z is then:

Toow
(o) =& = (13— 3a%(h — 2
()= T = T (1~ 3a%( - 2)
T 1
e Iy 3 2 —9
C 107 - th-2)
where h = 1 — /(1 — a?) (as shown in Figure 4).

This expression makes normalisation particularly easy: the normalised information
content is simply that part of the expression inside the square brackets.!®

131f it turns out to be the case that something like (E.6) is in fact required, then this is the form the
constraint should take: that the marginal information function is a Tangent.

4The volume of the “plug” is one quarter of a cylinder plus a quarter of a spherical cap. There are
standard formulae for these.

15While no definite claim is made here as to whether this approach will extend to other possible infons,
in particular computational models, it is reasonable to expect that there would be some relation between
the degree of inaccuracy of a model and the level of abstraction required to make it true. This is something
to be explored further. The expression used is fairly simple whereas the general case would be captured
by the solution to the following double integral:

I(O‘)://\/l—’ﬂ%—ﬁ%d’ﬂfrdﬁ}?

The full expression for the solution to this, as calculated via Mathematica, is:
Y O ST SIS EPRBIP ) S
6 V1-=903 —9% V1-=95 - 9%
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Figure 4: The degree of informativeness of an inaccurate and vacuous infon

6 BCP Revisited

So how does F'TSSI solve, or relate to, BCP? Floridi highlights the fact that although in
TSSI a contradiction does not have any informativeness and CONT (o) # (o), this is not
sufficient. In addition Floridi points out that a key difference between TWSI and TSSI
is that in the latter information is bound by the veridicality thesis (ie the infon must be
true in order to count as information) whereas in the former there is no such restriction
(ie “information” may be either true or false). So from the perspective of FTSSI what is
being talked about in TWSI, and hence the context in which BCP arises, is uninterpreted
data, not information.

Since the modifications to FTSSI described in this paper do not contradict, but rather
enhance, Floridi’s arguments we simply direct the reader to Floridi’s writings on the
subject for further details ([8], Pp 127ff).

In TWSI the issue arises in the context of the relation between information content

_% (iLOg 61(1+0§+ﬁp+iﬁT,/1ﬂ§ﬂ%)1 Loy lﬁw%wi(uﬂp)wﬁmhﬁ%ﬁ%D

V2.(—1+ V) 92.(1+Jp)
The result of using this integral to calculate the volume of the full octant yields:

I(o) = %(277 —i(—4+ Log(16)))

The Real part of which is ¢, the actual volume. This suggests that, although the formula is cumbersome
and the calculations tedious, we can use the real part of the result for any particular values of ¥ and
Y to get the answer we require.
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and probability. In TWSI probability refers to the a prior: likelihood of the infon being
true (which is a measure of the possible worlds it excludes) and Floridi’s arguments follow
therefrom. On the other hand, it is not without reason that we have proposed that the
relations in the information space be circles. This allows one to view information as a
complex number, and from there it is a short step to the notions of quantum probability
as utiilised in the cognitive science/mathematical psychology of Busemeyer et al [3].

From that viewpoint the projections to the subspaces are probability amplitudes (and
their squares are then probabilities). This raises the question: “Probabilities of what?”
To answer that one must look at the terms informed, misinformed®, and uninformed and
associate them with the dimensions ¢, 9, and ¥ respectively. Then taking the lead from
quantum theory, where the square of the projection is the probability that a particular
spin (down say) is 1, one may say that the value of the square of the projection onto the
U7 dimension is the probability that one is completely uninformed, say.

Then if one lets P(i), P(u), and P(m) be the probability of being informed, unin-
formed, or misinformed respectively, we have:

P(i) = *(0), P(u) = ¥%4(0), and P(m) = ¥%(c); and from the geometry of the

situation one can write:

P(i) + P(u)+ P(m) =1

or

P(i)=1— P(u) — P(m)

That is, the probability of one’s being informed is related to the probability of one’s
being uninformed and misinformed.

7 Conclusion

As noted above the Floridi’s solution to the BCP was a major step forward and so it is to
be hoped that the modifications and extension proposed here make it even more useful in
the general context of the Philosophy of Information. However, the main motivation for
the analysis is the overall context of my interest in Computational Philosophy of Science
(which in line with one of Floridi’s suggestions should take a more Informational turn).

While the solution proposed here is of general relevance and applicability, a major
interest is to provide a means of identifying the information content of models a model
and from that build a means of assessing the similarity of models [15] that includes
the level of abstraction of model [5]. The fact that one now has a representation that
permits one to view the Informativeness as a complex number enables one to explore the
possibility of achieving these aims by means of “quantum geometry” measures [12]. This
is my ongoing research activity in the domain.

16For the purposes of this discussion one assumes that there is no malicious intent and so disinformation
is ignored
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A Creation of the Information Space

Figure 5: The construction of the infon distance relation
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