
How Redundant Is It? - An Empirical Analysis on
Linked Datasets

Honghan Wu1, Boris Villazon-Terrazas2, Jeff Z. Pan1, and Jose Manuel Gomez-Perez2

1 Department of Computing Science, University of Aberdeen, UK
2 iSOCO, Intelligent Software Components S.A., Spain

Abstract. Data redundancy resides in most, if not all, information systems. Linked
Data is no exception. Existing approaches try to avoid data redundancies by
proposing compression techniques or succinct data structures. However, data re-
dundancies in Linked Data are useful sometimes, e.g., ontology based data ac-
cess can make use of A-Box redundancies to avoid unnecessary query rewritings.
Either you want to avoid it or make use of it, a good understanding about data re-
dundancies will facilitate your task, e.g., identify the exact redundant parts which
could be utilised or choose most effective techniques to compress a particular
dataset. Unfortunately, little effort has been put on making the data redundancy
explicit to data users. In this paper, we introduce a systematic categorisation for
Linked Data redundancy, and propose a graph pattern based approach for efficient
analysis. Analysis results on representative datasets lead to a main conclusion,
that is redundant-aware techniques are demanded.

1 Introduction

Data redundancy has different meanings in different contexts. In database community,
data redundancy means that the same piece of data is stored in multiple places in a
database system, while in information theory it means the wasted space used to transmit
certain data. In this paper, we focus on data redundancy in Linked Data, which means
the wasted space used to represent certain meaning in either stand-alone data space or
the Web of Data environment.

Depending on the scenarios, data redundancy in Linked Data might have different
effects to data consumption tasks. In many cases, Linked Data redundancy might be
unwelcome. For example, for storage or exchange purpose, the redundancy will cause
unnecessary resource consumptions, e.g., more disk spaces or longer time to download
a dump file from the Web. However, in other occasions, the redundancy of the data can
be utilised to facilitate the task on hand. For example, in Ontology Based Data Access
(OBDA) tasks, A-Box redundancy can be utilised to avoid unnecessary query rewritings
so that the efficiency of the system can be improved.

Redundancies in Linked Data have effects on a wide range of applications includ-
ing data publishing, query answering (in SPARQL endpoints), OBDA, and ontology
reasoning. Existing work [8, 3, 5] either focuses on RDF data compression or provides
succinct data structure for data access. Little attention has been put on making the data
redundancy explicit and available to Linked Data stakeholders. For data consumers, a
good knowledge about data redundancies in interested datasets will help users either

make use of them efficiently or choose the best technique to avoid them. For data pub-
lishers, such knowledge will guide them in making the right decisions like reusing the
right vocabularies, linking to right datasets or sometimes not linking at all. More gen-
erally, in the linked open data environment, the data redundancies residing in multiple
sources are the results of distributed and autonomous social efforts, which are valuable
sources for studying the properties and characteristics of the Data Web, e.g. analysing
the trustworthiness of statements.

To sum up, a better understanding about data redundancies in linked data will help
us know more and deeper about the Data Web, which will in turn facilitate more effec-
tive and efficient exploitations on the linked data. In this paper, we focus on revealing
the redundancies in Linked Data by both a qualitative analysis of systematic redun-
dancy categorisation and an quantitative analysis on various datasets covering different
domains.

The rest of the paper is organised as follows. In section 2, we briefly introduce
related work. Section 3 gives an discussion about the categorisation of redundancies in
Linked Data. Section 4 proposes our redundancy analysis methodology which covers
two different dimensions. Section 5 gives the detailed analysis results on real world
datasets. Finally, we conclude the work in section 6.

2 Related Work

RDF compression techniques have been proposed to eliminate data redundancies. Such
as RDF serialisations techniques, i.e., HDT serialisation [5], lean graphs [7] and K2-
triples [1] can be used to reduce file size. Another approach is based on logical com-
pression, such as the rule-based RDF compression [8], which can be used to substan-
tially reduce the number of triples in an RDF document. Inspired by the HDT approach,
Curé et al. proposed WaterFowl [3] as a succinct data structure for RDF data. The OWL
sameAs network was studied by Ding et al. [4]. The implication of sameAs links was
raised but not studied. Halpin et al. [6] also proposed a way to analyse identity in linked
data based on sameAs links. As we mentioned, at the time of writting and to the best
of our knowledge none of existing work has made the data redundancies explicit and
available to stakeholders of Linked Data, which is the main focus of this paper.

3 Linked Data Redundancy Categorisation

Given the fact that most Linked Datasets are represented in RDF data model, in the
first part of this section, we study RDF data redundancy and point out the main focuses
of this paper. In addition to RDF representation, the other important characteristic of
Linked Data is that it is linked. What are the aspects of being linked relevant to the data
redundancy, and how can they be effecting it? In the second subsection we try to answer
these questions.

3.1 Redundancy in RDF Data

From the data model level, an RDF dataset is essentially a set of RDF graphs that con-
tain a set of triples. To share or consume an RDF dataset, e.g., for storage, transmission

jeff-z-pan

Person

ISWC09_423foaf:made

Jeff Z. Pan

Concept and Role Forgetting in
ALC Ontologies

Co-occurrence

g1

jeff-z-pan ISWC09_423foaf:made

Jeff Z. Pan

Concept and Role Forgetting in
ALC Ontologies

Rules (as graph patterns)

Semantic Compressed RDF Graph

GP1

?x Personrdf:type
?y

GP2

?x
?y

g2

Fig. 1. Original v.s. Semantically Compressed

or query-answering, it needs to be represented in the second level, i.e., the serialisa-
tion level, where it has to be serialised as a sequence of bits. In this level, an RDF
dataset usually takes the form of textual or binary files by using predefined syntaxes,
e.g., RDF/XML, N-Triples or even sophisticated compression format (e.g. HDT [5]).
The redundancies of RDF data reside in both levels of RDF data representation, i.e.,
data model level and serialisation level.

In the data model level, the size of data can be calculated by the number of triples.
Hence, in this level, the data redundancy exists if less triples can be used to represent
the same semantic meanings of the original data. In the serialisation level, the data is
represented as a sequence of bits. Given a fix set of triples, one serialisation is said to
be more redundant than the other if it uses more bits than its counterpart.

In [9], we proposed a fine-grained categorisation of RDF data redundancies. Table 1
illustrates such categorisation of RDF redundancies and also puts it in the dimension of
RDF representation levels. In this paper we mainly focus on the semantic redundancy
and the second type of syntactic redundancy, i.e., the inter-structural redundancy. Both
are highlighted with a grey background in Table 1. Semantic redundancy is selected be-
cause it can be generated or removed by the T-Box axioms of a dataset. Hence, it is of
interest to most of the Linked Data consumption tasks like inference computation and
ontology based data access. Syntactic redundancy is also important to data consump-
tion because a concise serialisation is beneficial not only to data transmission but also
to query answering tasks [5]. In this category, a recent study [9] points out that most
existing compression techniques, e.g. [5], cannot deal with the inter-structural one [9].
Hence, it is particularly interesting to analyse inter-structural redundancies in Linked
Open Data. The rest of this section will discuss the redundancy types to be analysed in
this paper.

Table 1. RDF Data Redundancy Categorisation

Types Semantic Redundancy Syntactic Redundancy Symbolic RedundancyIntra-structural Inter-structural

Data Model Level - - -

Serialisation Level -

Semantic Redundancy An RDF dataset is said to be semantically redundant if
some triples can be removed without leading to any changes in its meaning. In most

cases the removal of these triples requires additional rules to be added in the dataset
so that it is possible to re-generate the removed triples when needed. The usual form
of such rules is the T-Box, i.e., the concept level statements in an ontology. For exam-
ple, in Fig. 1, we have an RDF graph of g1. In the FOAF ontology 3, there is a rule
of <foaf :name, rdfs:domain, foaf :Person>. Based on the rdfs2 rule in the RDF
specification, the type assertion in g1, i.e. <jeff-z-pan, rdf :type, foaf :Person>, can be
removed, given the presence of <jeff-z-pan, foaf :name, JeffZ.Pan>.

In a more general perspective, the semantic redundancy can be identified by co-
occurrences of triple patterns (cf. the red part of g1 in Fig. 1). Hence, it is not necessary
to restrain the ability of semantic redundancy identification by the limitation of T-Box
rules in representing triple pattern co-occurrences. In this regard, Joshi et al. [8] applied
association rule mining approach to identify the co-occurrences in terms of associa-
tion rules. In this paper, we apply a graph pattern based rule system to represent the
semantic redundancies. For example, in Fig. 1, g2 has less triples than g1 but the two
are semantically equivalent. The redundancy in g1 is represented by the graph pattern
rule in the upper part of g2. Obviously, graph pattern based rules can represent more
complex triple co-occurrences than T-Box rules.

Inter-structure Syntactic Redundancy As shown in Table 1, the other two types
of redundancies, i.e., syntactic and symbolic ones, both resides in the serialisation level.
Their volume can be evaluated using the number of bits used in the serialisation. To sep-
arate the two, we can use a simple formula |F | = n×r, where F is the serialisation file,
n is the number of resource occurrences and r is the average bits needed to represent a
resource. The syntactic redundancies reside in the component of n, while the symbolic
ones are in r.

Most existing serialisation approaches apply syntaxes to reduce n. The idea is to
group triples by subjects or objects so that the multiple occurrences of the same re-
source only need to be serialised once. For example, the RDF/XML serialisation stan-
dard provides abbreviation and striping syntaxes. However, such syntaxes only work
on concrete graph structures. Similar graph structures (i.e. graph patterns) which re-
peatedly occur in the data are not taken into account. In the following example, the
graph pattern GP has two instances of Inst1 and Inst2. The structure of GP appears
twice in both instances. This means that each of the two predicate resources of GP , i.e.
foaf :name and foaf :made, has two occurrences in its instances, which is avoidable
when GP structure (stored wherever) is referred instead of duplicated in both instances.

GP : <?U, foaf :name, ?Y >,<?U, foaf :made, ?Z >

Inst1 : < jeff-z-pan, foaf :name, Jeff Z. Pan >,<?U, foaf :made, ISWC09_423 >

Inst2 : < jose, foaf :name, Jose Manuel Gomez Perez >,<?U, foaf :made, ISWC13_1xx >

We use the term of intra-structural redundancy to denote the unnecessary resource
occurrences in concrete graph structure, while the term of inter-structural redundancy
is used for the unnecessary resource occurrences of graph patterns in its instances. Most
of existing serialisation approaches do not provide facilities to identify graph patterns.
Hence, they leave the inter-structural redundancy untouched.

3 http://xmlns.com/foaf/spec/

3.2 Redundancy in Linked Data

One of the most important characteristics of Linked Data is its linking capability, which
is to create connections from one information source to the other. The connection can
be created in the concept level, where individuals of one dataset are described using
concepts from another dataset or vocabulary. We denote this type of connections as
T-Box Reuse. The second type of connections is the linkage in individual level, where
individuals in one dataset are specified to be the same as their counterparts in the other,
e.g., by using owl:sameAs assertions. This type of connections is called as A-Box
Linkage in this paper. Both types of connections have implications in changing the
semantics of the original dataset. These implications might change the redundancies of
the dataset in question. In rest part of this subsection, we briefly discuss the possible
changes on data redundancies caused by T-Box Reuse, and leave the A-Box Linkage for
future work.

T-Box Reuse Essentially, T-Box Reuse will bring new rules to the original dataset.
These rules are a subset of the materialised axioms of the reused T-Box, which are
applicable to individuals. These new rules can infer a set of new triples 4 to the reusing
RDF dataset.

g g

Removable Derivable

Fig. 2. Data Redundancies affected by T-Box Reuse

Fig. 2 illustrates a typical case of such inference results. In Fig. 2, the original RDF
dataset, labelled as g, is denoted by the green oval, and the new set of inferred triples is
denoted by the pink oval with a label of g′. Depending on whether they are in the overlap
with existing triples, new triples can be divided into two parts. The two parts will lead
to two different consequences to the redundancies of the original data. The overlap part,
labelled removable in Fig. 2, contains those triples in g, which can be inferred by new
rules as well. This means that they are turned to be semantically redundant by the reused
T-Box. As a consequence, the dataset turns to have more redundancies. On the contrary,
the other part (g′ \ removable), labelled as derivable in Fig. 2, will decrease the data
redundancy according to the definition of data compression ratio 5. Specifically, in this
scenario, data compression ratio can be calculated by |g|+|derivable|

|g| , in which the bigger
|derivable| component becomes, the larger the compression ratio will be.

4 Some triples inferred by new rules might be inferred by the dataset’s own T-Box as well. To
make discussion easier, we use the term new triples to denote those triples which can NOT be
inferred by the dataset’s own T-Box but the new rules.

5 http://en.wikipedia.org/wiki/Data_compression_ratio

To sum up, removable and derivable affect the data redundancies in opposite ways.
Analyses on them will reveal the effects on data redundancy of concept-level connec-
tions between Linked Data.

4 Two Dimension Analysis

According to above discussions, the redundancies in Linked Data can be analysed from
two dimensions (cf. Fig. 3). The first dimension is that of the RDF data redundancy,
where the focus is to reveal different categories of redundancies from data model level
to serialisation level. The second dimension is from the linked semantic point of view,
where the focus is to analyse the data redundancy based on different types of semantics.
The A-Box semantics is to analyse the data redundancy only from data level without any
T-Box axioms. The other three types are considering both data and T-Box information.
The No Linkage semantics is to do the analysis based on the dataset’s main T-Box.
The main T-Box is the one most used for describing individuals in the data, which
is either defined by the data provider or reused from other sources. In our analysis,
we manually identify such main T-Box for each dataset. It is not necessary that every
dataset has a main T-Box. In such cases, this analysis is not applicable. The T-Box Reuse
semantics is the type of analysis focusing on redundancy changes caused by concept
level connections, i.e., reusing T-Box, while the A-Box Linkage is to reveal the changes
of data redundancies caused by the individual level connections.

Semantic Syntactic Symbolic

A-Box ✔ ✔

A-Box & T-Box

No Linkage ✔ - -

T-Box Reuse ✔ - -

A-Box Linkage - -

RDF Redundancy Dimension

Linked Semantic

Dimension

Fig. 3. Two Dimension Analysis on Linked Data Redundancy

In the matrix of Fig. 3, there are total 6 valid types of analyses. In this paper, we
focus on four of them, which are marked with ticks in the figure. For A-Box semantics,
we propose a graph pattern based approach to reveal the semantic and syntactic (inter-
structure only) redundancies. Based on the graph pattern approach, we propose a virtual
materialisation approach to analyse data redundancies in No Linkage and T-Box Reuse
semantics. The other two types of analyses are left for future work.

4.1 Graph Pattern Based Analysis Method

As discussed in section 3.1, we focus on semantic redundancy and the inter-structural
syntactic redundancy, both of which will be benefited from the ability to identify fre-
quent graph patterns. For semantic redundancy, identified graph patterns can be used to

identify possible rules for removing redundant triples. Combined with the knowledge of
instance numbers of these graph patterns, these rules can be used to calculate the volume
of semantic redundancy as number of removable triples. Similarly, for inter-structural
redundancy, the structure of graph patterns and their instances numbers can give us a
way to calculate the volume of syntactic redundancy in the data. In this subsection, we
describe an entity description pattern based approach for redundancy analysis.

In an RDF graph, we call its non-literal nodes as entities. For an entity e in an RDF
graph G, we can get a data block for it by extracting triples in G each of which has e
as its subject or object. We call such kind of data blocks as Entity Description Blocks
(EDBs for short).

For an EDB, it can be summarised by a notion of entity description pattern which
is defined in Definition 1. EDP, the short name for entity description pattern, is the
building block of our analysis approach.

Definition 1. (Entity Description Pattern) Given an entity description block Be, its de-
scription pattern is a tuple Pe = (Ce, Ae, Re, Ve), where

– Ce = {ci| < e, rdf : type, ci >∈ G} is called as the class component;
– Ae = {pi| < e, pi, li >∈ G and li is a literal} is called as the attribute compo-

nent;
– Re = {ri| < e, ri, oi >∈ G and oi is a URI resource or blank node} is called as

the relation component;
– Ve = {vi| < si, vi, e >∈ G} is called as the inverse relation component.

Taking the RDF graph g1 in Fig. 1 for example, the EDP of entity jeff-z-pan is(
{foaf :Person}, {foaf :name}, {foaf :made}, ∅

)
, and the one of ISWC09_423 is(

∅, {rdfs:label}, ∅, {foaf :made}
)
.

By generating EDPs for all entities in an RDF graph G, we can get a EDP repre-
sentation of G, which is a set of EDPs. As we will show in later section, the number
of EDPs in an RDF dataset is usually much less than the number of entities. This is
because many entities are sharing same EDP. The more entities are sharing one EDP;
the more frequent its structure is duplicated. Such duplications are the source of data
redundancies, which we break down to semantic redundancy and syntactic redundancy.

Semantic Redundancy Identified By EDP In the definition of EDP, the class compo-
nent Ce is a set of constant class names. Hence, it is straightforward to generate a graph
pattern based substitution rule for removing these type assertions from the original data.
In particular, the substitution rule is defined as (∅, Ae, Re, Ve)→ (Ce, Ae, Re, Ve). Let
fPe be the instance number of Pe, the number of triples can be removed by the rule is
|Ce|×fPe

. In jeff-z-pan’s example, the rule will be (∅, {foaf :name}, {foaf :made}, ∅)→
({foaf :Person}, {foaf :name}, {foaf :made}, ∅). In this particular case, this rule
is equivalent to the rule of <foaf :name, rdfs:domain, foaf :Person> from FOAF
vocabulary.

Inter-structural Syntactic Redundancy Identified By EDP The inter-structural re-
dundancy denotes the unnecessary structure recurrences in EDP’s instances, i.e. EDBs.
Given an EDP Pe, it is straightforward to calculate its recurrences as (|Ae| + |Re| +
|Ve|)× fPe

, the unit of which is resource occurrence.

Virtual A-Box Materialisation on EDP When considering T-Box of an RDF dataset,
the data redundancy might be changed due to the above-mentioned removable and
derivable triple sets. To compute the two triple sets, inferences need to be performed on
A-Boxes, which might be too expensive for large scale data analyses. For redundancy
analysis purpose, we only need to know the size of removable and derivable sets
instead of getting the exact triples. Inspired by this observation, we propose a virtual
materialisation approach based on EDP to compute the triple sizes for the two triple
sets.

As supporting efficient query answering is the basis of many Linked Data consump-
tion tasks, our discussion in this paper is based on OWL2 QL profile [2]. Given an EDP
Pe, according OWL2 QL profile, it can be proved that the four components of Pe are
sufficient for inference computation on EDP. When applying inference rules defined
in [2] on an EDP, we use a new EDP: PM

e = (CM
e , AM

e , RM
e , V M

e) to store all the
inference results. After the inference, the number of derivable triples can be calculated
as follows.

|derivable| = fPe
×
∑
c∈N

f(c), (1)

where N = (CM
e \Ce)∪(AM

e \Ae)∪(RM
e \Re)∪(V M

e \Ve) and f is an auxiliary
dictionary which stores the instantiated times of each concept in Pe ∪ PM

e .

The number of removable triples can be calculated as follows.

|removable| = fPe
×
∑
c∈E

f(c), (2)

where E = (CM
e ∩ Ce) ∪ (AM

e ∩Ae) ∪ (RM
e ∩Re) ∪ (V M

e ∩ Ve).

5 Redundancy Analysis Results on Linked Datasets

5.1 Datasets

The datasets selected for analysis are identified from Linked Open Data cloud 6. There
is a coloured version which categorises the datasets in different domains. We selected
5 datasets from the Linked Open Data Cloud, which cover 5 out 6 domains listed in the
coloured version. The general information about datasets is listed in Table 2.

In addition to trying to have a diverse domain coverage in dataset selection, we tried
to select datasets with different sizes (cf. the #Triples column). We also selected two
different datasets from one particular dataset (the Ordnance Survey), which are quite
different in topics and size. The main purpose is to have our sample as representative as
possible, while keeping the number of datasets manageable.

One strategy we apply in our analyses it to focus on data instances of most popular
EDPs instead of working on all data. The idea is to maintain an efficient analysis while
capturing the most part of the data. The threshold chosen is 90%, which means that we
analysis 90% of the data.

6 http://lod-cloud.net/

Table 2. General Information of Selected Datasets

Dataset Domain #Triples #EDP #EDP@90%

LinkedMDB Media 6,148,121 10,316 26
LOV User-generated con-

tent
54,630 492 15

DBLP Publication 94,450,169 438 6
Ordnance Survey
(50K Gazetteer)

Geographic
& Government

2,368,655 6 1

Ordnance Survey
(Code-Point)

Geographic
& Government

33,750,456 19 2

In the table, there are other metrics related to EDP. #EDP is the total number of
EDPs identified in the dataset, which is a quantitative measurement about the variety of
how entities are described. #EDP@90% is the minimal number of top popular EDPs
the sum of whose instance numbers is not less than 90% of the total number of entities
in the dataset. From Table 2, although the total number of EDPs are large in some cases,
e.g., LinkedMDB has more than 10 thousand EDPs, the major part of the data (90%)
resides in a very small number of EDPs in all cases. The more popular one EDP is; the
more redundancy there will be. Hence, having a small number of very popular EDPs
indicates a large volume of data redundancies.

5.2 The results

A-Box only results Table 3 gives the analysis results by only considering A-Box level
information. Both syntactic and semantic redundancies are analysed by EDP based ap-
proach. In the table, #RRes is the redundant resource occurrences of inter-structural
redundancies; RRatiosyn is the syntactic redundancy ratio, i.e. #RRes/3

#Triples ; #RTriple
is the redundant triples (i.e. semantic redundancy); RRatiosem is the semantic redun-
dancy ratio, i.e. #RTriple

#Triples ; and #GPRules is the number of graph pattern substitution
rules needed to remove semantic redundant triples.

As for syntactic redundancies, in all datasets, they are considerably large. The re-
dundant ratio is more than 20% in all cases except DBLP where the ratio is still near
6.5%. The biggest ratio was obtained from 50K Gazetteer, which is more than 32%.
Furthermore, it is notable that we only consider inter-structural redundancy and the ra-
tio is calculated from redundancies in 90% data over the whole data. This means that
the overall syntactic redundancy ratio should be even more.

Table 3. A-Box Only: Semantic Redundancy and Syntactic Redundancy

Dataset Syntactic Redundancy Semantic Redundancy
#RRes RRatiosyn #RTriple RRatiosem #GPRules

LinkedMDB 4,475,952 24.27% 610,463 9.93% 21
LOV 36,718 22.40% 8,845 16.19% 8
DBLP 18,283,964 6.45% 2,901,347 3.07% 3
Ordnance Survey
(50K Gazetteer)

2,331,720 32.81% 259,080 10.94% 1

Ordnance Survey
(Code-Point)

27,455,294 27.12% 1,595,931 4.73% 3

The right part of Table 3 shows that the EDP approach can identify substantial
semantic redundancies as well. More than 3% of triples are redundant in all analysed
datasets. The most semantically redundant one is LOV dataset, which has more than
16% redundant triples. The #GPRules column shows an interesting phenomenon, i.e.
these semantic redundancies can be removed by very small number of rules. The most
efficient rule set comes from 50K Gazetteer, where one single rule can remove more
than 10% triples.
Linked Semantics Table 4 shows the data redundancies under different explicit seman-
tics. Two types of semantics of No Linkage and T-Box Reuse are analysed. #DTerm
is the number of terms from reused T-Box, which are directly used by current dataset;
and #RAxioms is the number of axioms from (materialised) reused T-Box, which are
applicable in the dataset materialisation.

No Linkage analyses are done by considering the datasets’ main T-Boxes. As shown
in left part of Table 4, LinkedMDB and LOV do not have a main T-Box. They are using
concepts defined in their own name spaces but without specifications about the seman-
tics of these concepts. Such situations are very common in Linked Data Cloud. For
DBLP dataset, we identified its main T-Box as SWRC ontology 7. Considering this T-
Box, around 1.6 million triples can be further derived but no triples in the dataset are
removable. This means that the current data is semantically less redundant when T-Box
axioms are taken into account. The case of 50K Gazetteer is similar, where main ontol-
ogy of the dataset is officially published 8. An interesting finding is that the derivable
triples of 50K Gazetteer are even more than its original triples. This indicates that the
dataset is published in a quite concise way. In Code-Point’s case, the T-Box can help
remove around 1.6 million triples. This means that these triples turn to be redundant.

Table 4. Linked Semantics: Data Redundancies Considering (Linked) T-Box Axioms

Dataset No Linkage T-Box Reuse
derivable removable derivable removable #DTerms #RAxioms

LinkedMDB - - 1,652,385 0 2 6
LOV - - 2,197 0 2 11
DBLP 1,669,644 0 42,851,260 1,231,703 2 10
Ordnance Survey
(50K Gazetteer)

4,361,100 0 - - - -

Ordnance Survey
(Code-Point)

36,706,413 1,595,931 - - - -

The right part of Table 4 gives the analysis result of considering reused T-Box ax-
ioms. 3 out of 5 datasets are reusing one popular T-Box, i.e. FOAF ontology. In LOV
dataset, about 4% new triples can be inferred by the reusing FOAF ontology. In other
two cases, LinkedMDB and DBLP, a surprisingly large number of triples can be derived.
Note that in all cases, the datasets are only using two terms from FOAF. Even the total
number of axioms applicable for the inference is quite small (cf. #RAxioms in the
table). This indicates that T-Box Reuse might lead to substantial derivable triples even
when the number of reused terms is very small.

7 http://ontoware.org/swrc/
8 http://data.ordnancesurvey.co.uk/datasets/os-linked-data

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

LinkedMDB LOV DBLP 50K
Gazetteer

Code-Point

A. EDP VS. T-Box

#RTriples

Removable

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

LinkedMDB LOV DBLP 50K Gazetteer Code-Point

B. Semantic VS. Syntactic

RRatio_sem RRatio_syn Sum

90.00%
100.00%
110.00%
120.00%
130.00%
140.00%
150.00%
160.00%
170.00%
180.00%

LinkedMDB LOV DBLP

C. No Linkage VS. T-Box Reuse

No Linkage
T-Box Reuse

Fig. 4. Comparisons: A. EDP VS. T-Box; B. Semantic VS. Syntactic; C. No Linkage VS. T-Box Reuse.

Comparisons The top-left figure in Fig. 4 compares the volumes of semantic redun-
dancies identified by EDP approach (#RTriples) and T-Box axioms (Removable).
The Removable in the figure is the sum of Removables of both No Linkage and T-
Box Reuse. In Cod-Point dataset, the two approaches identified the same number of
redundant triples. In all other cases, EDP approach is much better. This indicates that
there exist a large volume of semantic redundancies which are only identifiable to more
generalised rule systems than the T-Box axiom.

The top-right figure illustrates the comparison between semantic redundancy and
syntactic redundancy. In all cases, the semantic one is less. The Sum of the two gives
an idea about the overall data redundancies in these datasets. In 4 out of 5 datasets,
the redundancy is more than 30%. The largest one is in 50K Gazetteer, which has 44%
redundant data, and DBLP is least redundant dataset with about 15% redundancy.

The bottom figure in Fig. 4 shows the differences in the size of A-Box serialisation
with and without Reused T-Box semantics. In the figure, the size of serialisation is
illustrated using the percentage: Percentage = |A-Box Materialisation|

|Original A-Box| . In all cases, the
materialisations are increased by T-Box Reuse significantly. Notably, there are more
than 26% increment for LinkedMDB and nearly 70% for DBLP.

6 Conclusion

In this paper, we introduced a systematic approach for analysing Linked Data redun-
dancy. The most straightforward conclusion is that data redundancies in Linked Datasets
are not only huge but also diverse. This leads to our main conclusion: redundancy-aware

techniques are demanded for both data consumption and data publishing. The conclu-
sion is supported by several observations as follows.

– For Data Compression The compression tools or techniques should be aware that
different types of redundancies exist. Different redundancies might need different
techniques. Moreover, the knowledge of redundancy distribution is crucial to tools
which want to make a trade-off between efficiency and compression ratio.

– For Data Access As shown in the results (cf. Table 2), data entities are described
via different data patterns (EDPs). In most cases, the data distribution among EDPs
is skewed, i.e. a small number of EDPs have a large number of data instances. For
efficient data access purpose, the knowledge of such distribution and how to make
use of it are critical.

– For OBDA and reasoning Existing wok has shown that A-Box redundancy can be
utilised to avoid unnecessary rewritings. Results in this paper suggests that moving
a step forward from using rules equivalent to T-Box axiom to more general rule
systems might improve the effectiveness of existing approaches significantly.

– For Data Publisher Being encouraged to link their data to other datasets, the pub-
lisher should be aware of the consequences of such linking in terms of bringing
in removable and derivable triples. We have shown that a very small number of
reuses can lead to a very large number of derivable. Publishers should be alarmed
before creating links, and tools are needed to estimate such consequences and
prompt them to the publisher.

References
1. S. Álvarez-García, N. R. Brisaboa, J. D. Fernández, and M. A. Martínez-Prieto. Compressed

k2-triples for full-in-memory rdf engines. arXiv preprint arXiv:1105.4004, 2011.
2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The dl-lite family. Journal of Automated
reasoning, 39(3):385–429, 2007.

3. O. Curé, G. Blin, D. Revuz, and D. C. Faye. Waterfowl: A compact, self-indexed and
inference-enabled immutable rdf store. In The Semantic Web: Trends and Challenges, pages
302–316. Springer, 2014.

4. L. Ding, J. Shinavier, Z. Shangguan, and D. L. McGuinness. Sameas networks and beyond:
analyzing deployment status and implications of owl: sameas in linked data. In The Semantic
Web–ISWC 2010, pages 145–160. Springer, 2010.

5. J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. Binary rdf
representation for publication and exchange (HDT). Web Semantics: Science, Services and
Agents on the World Wide Web, 19:22–41, 2013.

6. H. Halpin, P. J. Hayes, J. P. McCusker, D. L. McGuinness, and H. S. Thompson. When owl:
sameas isnâĂŹt the same: An analysis of identity in linked data. In The Semantic Web–ISWC
2010, pages 305–320. Springer, 2010.

7. L. Iannone, I. Palmisano, and D. Redavid. Optimizing rdf storage removing redundancies: an
algorithm. In Innovations in Applied Artificial Intelligence, pages 732–742. Springer, 2005.

8. A. K. Joshi, P. Hitzler, and G. Dong. Logical linked data compression. In The Semantic Web:
Semantics and Big Data, pages 170–184. Springer, 2013.

9. J. Z. Pan, J. M. G. Pérez, Y. Ren, H. Wu, and M. Zhu. SSP: Compressing RDF data by
summarisation, serialisation and predictive encoding. Technical report, 07 2014. Available as
http://www.kdrive-project.eu/resources/.

