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Abstract

Inequality indices for self-assessed health and life satisfaction are typi-
cally constructed as functions of the cumulative distribution function. We
present a unified methodology for the estimation of the resulting inequal-
ity indices. We also obtain explicit standard error formulas in the context
of two popular families of inequality indices that have emerged from this
literature.
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A literature on the measurement of inequality in relation to ordered response
data has emerged in the last ten years following the work of Allison and Foster
(2004). A large body of theoretical literature has ensued, using the cumulative
distribution function as the main argument of the underlying ethical index.

Some authors (e.g. Apouey 2007, Cowell and Flachaire 2012) have derived
standard errors for the inequality indices they have introduced. The present work
complements these papers in that it presents a unified methodology for the esti-
mation of inequality indices of the cumulative distribution function.

1. Framework

Consider data on k ordered states of well-being (for example self-reported health
status or more generally life satisfaction). We gather the responses (n1, ..., nk)
of n individuals from an underlying population p = (p1, ..., pk) in a frequency
distribution p̂ = (p̂1, ..., p̂k) where p̂i = ni/n is the proportion of individuals

who are in class i, and such that
k∑

i=1

ni = n. We denote P̂ = (P̂1, ..., P̂k) the

resulting cumulative distribution, where P̂j =

j∑

i=1

p̂i, and we let D denote the set of

cumulative distribution functions. An inequality index for ordered response data
is then some function F : D→ R+ with parameters reflecting some appropriately
defined inequality aversion axiom and other ethical properties. Two difficulties
arise in developing inference for ethical indices of the cumulative distribution.
Firstly, the data analyst is confronted with functions of counts or frequencies
rather than the usual moments of a continuous variable that are common in the
income inequality literature (Cowell, 1999), and secondly the ethical index will
rarely present itself in the form of a linear function of the cumulative distribution
(though see below).

Let m ∈ {1, ..., k} denote the median response state in some given distribution
P ∈ D. First, to give an example of an inequality index that is linear in the
cumulative distribution function, consider the family of sub-group decomposable
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indices of Kobus and Miłós (2012):

Λa,b(P ) =

a
m−1∑

i=1

Pi − b
k∑

i=m

Pi + c1 (k,m, a, b)

c2 (k,m, a, b)
a, b ≥ 0 (1.1)

c1(k,m, a, b) = b(k + 1−m) (1.2)

c2(k,m, a, b) = (m− 1)
a

2
− (k + 2)

b

2
+ c1 (1.3)

Here a and b are parameter values chosen by the data analyst in order to reflect
different social value judgements regarding inequality below, and above, the me-
dian health state m, and c1 and c2 are normalization constants. Next consider the
alphabeta family of inequality indices (Abul Naga and Yalcin, 2008):

∆α,β(P ) =

m−1∑

i=1

Pαi −
k∑

i=m

P βi − c3(k,m, α, β)

c4(k,m,α, β)
α, β ≥ 1 (1.4)

c3(k,m, α, β) = k + 1−m (1.5)

c4(k,m, α, β) = (m− 1)

(
1

2

)α
− (k −m)

(
1

2

)β
− 1 + c3 (1.6)

Likewise, α and β are parameter values chosen to reflect social aversion to inequal-
ity below and above the median, and c3 and c4 are constants. Note that the index
∆α,β(P ) is only linear in P in the specific case where α = β = 1, and furthermore
that∆1,1(P ) = Λ1,1(P ) for any distribution P. The above indices feature in studies
aimed at quantifying health inequality in multiple country contexts (e.g. Jones
et al. 2011) and also in simulating the envisaged effect of policy interventions on
health inequality in the context of specific pathologies (e.g. Arrighi et al. 2015).

2. Large sample distribution

The estimation of inequality indices of the type considered in this paper can be
treated in a unified framework as an estimation of some non-linear function F (.)
of an unknown cumulative distribution function P0, with associated probability
distribution p0. The Analogy Principle then guarantees that under appropriate
assumptions F (P̂ ) will result in a consistent estimator of F (P0).
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Let cov(y) denote the covariance matrix of some random vector y and let

Ω0 :=cov(n
1

2 p̂). Since individuals select one and only one of k possible responses,
the covariance matrix Ω0 is said to arise from a context of multinomial sampling.
That is, writing p0 = (p1, . . . , pk), we have that Ω0 is the following function of the
vector p0 :

Ω0 =




p1(1− p1) −p1p2 · · · −p1pk
−p2p1 p2(1− p2) −p2p3 · · ·

...
...

. . .
...

−pkp1 −pkp2 · · · pk(1− pk)


 . (2.1)

Observe then that, as a resulting of multinomial sampling, the covariance matrix
Ω0 will always be finite and positive semi-definite 1.

We next define the k−dimensional Jacobian vector of the transformation F as
follows:

J =
(
∂F/∂P1 · · · ∂F/∂Pk

)
, (2.2)

and throughout the paper we maintain the following assumptions:

[A1] There is a finite number k of ordered states.

[A2] The n independent responses (n1, ..., nk) defining the vector of frequen-
cies p̂ = (p̂1, ..., p̂k) are jointly distributed from a multinomial distribution with

parameters n and p0, and such that cov(n
1

2 p̂) = Ω0, where Ω0 is a k × k positive
semi-definite matrix.

[A3] The function F : D → R+ does not involve n and is continuously differ-
entiable at the population distribution P0.

Our purpose here is to obtain the large sample distribution of the sample
estimator F (P̂ ) as a function of F (P0). The following result (see for instance
Anderson, 1996) will prove useful:

Lemma 1 Under [A1] and [A2] the vector of frequencies p̂ converges to a

k−variate normal distribution such that:

n1/2 (p̂− p0) −→ N (0; Ω0) . (2.3)

1Specifically, because p1 + · · ·+ pk = 1, the matrix Ω0 will have a rank equal to k − 1.

4



Because by construction
k∑
i=1

p̂i = 1, the resulting large sample distribution of

p̂ in Lemma 1 above is degenerate. Nonetheless, the large sample distribution of
the inequality index F (P̂ ) is non-degenerate:

Proposition 2 Under [A1−A3] the sample inequality index F (P̂ ) converges

to a univariate normal distribution such that:

n1/2
(
F (P̂ )− F (P0)

)
−→ N (0; J0LΩL

′J ′0) (2.4)

where J0 := J(P0) is the Jacobian vector (2.2) evaluated at P0.

Proof Define the k × k lower-triangular matrix L = {lst} such that lst = 0
if s < t and lst = 1 if s ≥ t. Then L is a summation matrix such that P̂ = Lp̂

and it follows straightforwardly from Lemma 1 that n1/2
(
P̂ − P0

)
converges

to a k−variate normal distribution N (0; LΩ0L
′) . Also, from [A1 − A2], the

Law of Large Numbers entails that P̂ converges in probability to P0, whilst
[A3] entails that J(P̂ ) converges in probability to J(P0). It then follows from

the delta method that n1/2
(
F (P̂ )− F (P0)

)
converges to a normal distribution

N (0; J0LΩL
′J ′0) . �

3. Jacobian vectors and standard errors

In the light of (2.4) in Proposition 2, the asymptotic distribution of F (P̂ ) involves
a quadratic form in the Jacobian vector J(.), evaluated at P0.

To clarify this point, define the matrix V0 = LΩ0L
′. Then the asymptotic

variance of F (P̂ ) in Proposition 2 takes the form J(P0)V0J
′(P0), where V0 is a

positive semi-definite matrix. Consider the estimator Ω̂ = {ω̂il} with generic
element

ω̂il =





ni
n

(
1−

ni
n

)
i = l

−
ninl
n2

i �= l
(3.1)

and furthermore, define the matrix

V̂ = LΩ̂L′. (3.2)

Then Ω̂ is a consistent estimator of Ω0 and likewise V̂ is a consistent estimator of
V0. In the light of Proposition 2 we can then write the asymptotic standard error
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of F (P̂ ) as the following expression 2:

se[F (P̂ )] =

(
1

n
J(P̂ )V̂ J ′(P̂ )

)1/2
. (3.3)

The estimator V̂ is generally applicable in the context of inequality indices of
the cumulative distribution function. However, the standard error formula (3.3)
clearly requires differentiability of the function F so as to enable the researcher
to evaluate the Jacobian vector J(.). The Jacobian vector, however, will vary
depending on the structure of the inequality index.

3.1. Indices that are decomposable by sub-groups

Let m ∈ {1, ..., k} denote the median response state in some given distribution
P = (P1, ..., Pn) ∈ D and return to the class (1.1) of sub-group decomposable
inequality indices of the cumulative distribution, introduced by Kobus and Miłós
(2012). As a corollary to Proposition 2, we derive the form of the Jacobian vector
in relation to (1.1):

Corollary 3 For the class of inequality indices of the cumulative distribution

function (1.1) that are decomposable by population sub-groups, the Jacobian vector

J evaluated at some distribution P ∈ D takes the form

J(P ) =
1

c2(k,m, a, b)

(
aιm−1, −bιk+1−m

)
(3.4)

where ιq is a q−dimensional row vector of ones, and where c2 is the constant

defined under (1.3).

2Alternatively, we may write the standard error formula in expanded form. Let J(P̂ ) =
(Ĵ1, ..., Ĵk) and observe that the element v̂st of the matrix V̂ is of the form

v̂st =
s∑

i=1

t∑

l=1

ω̂ij

Then, the standard error (3.3) of the inequality index may be evaluated as follows

se[F (P̂ )] =

(
1

n

k−1∑

i=1

k−1∑

l=1

ĴiĴlv̂il

)1/2

Note that the double sum is evaluated from 1 to k− 1 as the last row and column of V̂ are both
null vectors.
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3.2. The alphabeta family of inequality indices

Unlike the class of decomposable inequality indices (1.1), the function F (.) un-
derlying the alphabeta family ∆α,β of (1.4) is a non-linear function of P when the
parameters α and β are strictly greater than 1. There, the Jacobian vector will
involve the distribution P :

Corollary 4 For the alphabeta family of inequality indices of the cumulative

distribution function (1.4), the Jacobian vector J evaluated at some distribution

P ∈ D takes the form

J(P ) =
1

c4(k,m, a, b)

(
αPα−11 , · · · , αPα−1m−1, −βP

β−1
m , · · · , −βP β−1k

)
,

(3.5)
where c4 is the constant defined under (1.6).

4. An illustrative example

Consider data on five ordered nutritional health states from the Egyptian Inte-
grated Household Survey of 1997-1999 3. The data refer to two statistical areas
of Northern Egypt (also known as Lower Egypt), namely Metropolitan Lower
Egypt (MLE) and Non-Metropolitan Lower Egypt (NMLE). The resulting cumu-
lative distributions are respectively P̂ = (0.075, 0.187, 0.430, 0.812 1.00) for the
MLE data (n = 107) and Q̂ = (0.040, 0.144, 0.363, 0.667 1.00) for the NMLE data
(n = 452). Note also that the median response state ism = 4 in both distributions.

Table 1 reports inequality estimates and standard errors, calculated using the
alphabeta family for various inequality aversion parameter combinations (α, β).
Note that the first set of calculations pertaining to the pair (α, β) = (1, 1) are also
estimates of inequality in the family of sub-group decomposable inequality indices
Λa,b(P ) of (1.1), where a = b = 1.

Observe that all inequality estimates reported in the table are statistically sig-
nificant. Furthermore, for all five (α, β) pairs, the inequality estimate is somewhat
smaller in Metropolitan Lower Egypt. The inferential framework we have devel-
oped in this paper is well adapted to test for equality of the estimates pertaining
to a given row of the table 4. The test statistic of the last column of Table 1 does

3The health states in ascending order (from state 1 to state 5) are the following: type-III
obese, type-II obese, type-I obese, overweight and not overweight.

4Consider two sample cumulative distributions P̂ , Q̂ ∈ D, and some inequality index F (.).
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not reject the null hypothesis of equality of health dispersion levels in the two
regions, in relation to the first three sets of estimates. However, it is only in the
context of parameter values (α, β) = (2, 2) and (α, β) = (2, 4) that the difference
in the inequality estimates is statistically different from zero.
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Under the null hypothesis that health inequality levels are identical in P and Q (H0 : F (P ) =
F (Q)), the test statistic z defined as follows:

z :=
F (P̂ )− F (Q̂)

[(
se[F (P̂ )]

)2
+
(
se[F (Q̂)]

)2]1/2 (4.1)

is distributed in large samples as a N (0, 1) variate. The test thus rejects H0 at the 5% level
when |z| > 1.96.
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Table 1: Inequality in Nutritional Health in Lower Egypt

(α, β) MLE NMLE Test

(1, 1) 0.439 (0.042) 0.440 (0.018) −0.022
(1, 2) 0.458 (0.040) 0.490 (0.016) −0.746
(2, 1) 0.330 (0.041) 0.390 (0.017) −1.387
(2, 2) 0.376 (0.042) 0.474 (0.017) −2.165
(2, 4) 0.467 (0.046) 0.567 (0.014) −2.108

1) The inequality estimates pertain to the inequality measure (1.4) with parameters

(α, β). Standard errors are reported inside parentheses.

2) There are n = 107 observations pertaining the MLE sample (Metropolitan Lower

Egypt) and n = 452 in the NMLE sample (non-Metropolitan Lower Egypt).

3) The test statistic of equality of estimates is as defined in (4.1) of footnote 4. The

critical (absolute) value of the test at the 5% level is equal to 1.96.
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