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Abstract

In this paper we examine the Lorenz ordering when the number of pay

states is finite, as is most often the case in public sector employment. We

characterize the majorization set: the set of pay scales such that some

distribution  is more egalitarian than another distribution , with  and

 being two distributions of a given sum total. We show that while this set

is infinite, it is generated as the convex hull of a finite number of points.

We then discuss several applications of the result, including the problem of

reducing inequality between groups, conditions under which different pay

scales may reverse the ordering of two Lorenz curves, and the use of the

majorization set in relation to optimal income taxation.
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1. Introduction

In recent years there has been a growing interest in measuring inequality in rela-

tion to qualitative data such as self assessed health, happiness and life satisfaction

more broadly. The research community has provided new methods of analyzing

qualitative data 1 alongside a well established literature on the analysis of contin-

uous income data, founded on generalizations of the Lorenz ordering and related

income inequality measures (Atkinson, 1970; Ok, 1996; Foster and Shneyerov,

1999; Gadjos and Weymark, 2005; Savaglio, 2006; and del Río and Alonso-Villar,

2010). Yet the problem of measuring inequality in presence of a finite number of

discrete pay states is yet to be examined in fuller detail. The analysis of this prob-

lem, involving discrete data—the way qualitative data are discrete—yet cardinal—the

way income data are cardinal—is the purpose of the current paper.

An economic theory of competitive earnings differentials predicts that earn-

ings rise with the disutility of work associated with various occupations, or various

roles within the same enterprise. A tournament theory of internal labour markets

also produces a discrete set of pay states, where "...the hierarchical structure of

the firm rests on a given grid of remunerations in which wages change discontinu-

ously, and only with promotion ." (Cahuc et al. 2014, p. 365.) Accordingly, that

income or earnings present themselves in a discrete and finite number of states

is certainly often the norm in public sector employment. For instance, Britain’s

Senior Civil Service has four pay states, namely Assistant Secretary, Deputy Secre-

tary, Permanent Secretary and Head of Civil Service (Department of Finance and

Personnel, 2014). Additionally, there are annual pay increments between the first

and second, second and third and third and fourth of these pay classes. A similar

pay structure may be found in the government sector of other EU countries.

The particular perspective we shall follow on the measurement of inequality

with a finite number of pay states will be that of characterizing the majorization

set : that is, the entire set of pay scales that allow for a Lorenz curve ranking of two

distributions (say public sector workers in the London area versus those of other

parts of Britain.) In the mathematical sciences, Brualdi (1984) characterizes the

set of doubly stochastic matrices given two fixed vectors  and , that enable one

to express  as the product of a doubly stochastic matrix and the vector , and

calls the resulting set the majorization polytope. Following this lead, the present

1See for instance Allison and Foster (2004), Apouey (2007), Abul Naga and Yalcin (2008),

Zheng (2011), Gravel and Moyes, (2012), Chakravarty and Zoli (2012), Cowell and Flachaire

(2012), Kobus and Miłós (2012), Andreoli and Zoli (2013), and Gravel et al. (2014).
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paper explores the concept of the majorization set in economics. Consider the

general problem of selecting parameter values for a policy vector (this could be

a pay scale, a combination of an income allowance and a uniform tax rate, etc.)

in a way as to reduce inequality over an initial situation. The majorization set is

the set of policy vectors that achieve an ordering of Lorenz curves of a benchmark

distribution and the distribution of interest.

The characterization of the majorization set and its related properties can be

informative for examining several existing problems in the income distribution

literature. The first result of the paper is that the majorization set is a closed and

bounded type of convex set known as a polytope 2. Such a set is the convex hull of

a finite number of points (pay scales), known as the vertices of the majorization

set. Central to this result, is a majorization matrix that we introduce in the

paper, that expresses the partial sums (inequalities) defining Lorenz dominance.

The vertices of the majorization set may be thought of as policy benchmarks,

providing the limits of feasible pay policies. The vertices are then jointly sufficient

statistics for generating the majorization set. The second result of the paper is

that the majorization set and its dual set (the set of pay scales that allow for the

reverse ordering of the same two distributions) are separable convex sets. The

coordinates of the separating hyperplanes are provided by the non-zero rows of

the majorization matrix.

Equipped with these results, we discuss five applications of the majorization

set. Firstly we revisit the problem of characterizing the set of income transforma-

tions that preserve the Lorenz ordering of two distributions, a question studied by

Moyes (1994) in the context of continuous income data. We exploit the convexity

of the majorization set to revisit this problem in the context of a finite number of

pay scales, where we establish a simple relation between the set of transformations

of the pay scale that preserve the Lorenz ordering of a pair of distributions and

the vertices of the majorization set. Following Bourguignon (1979) and Shorrocks

(1980), it is now a well established practice in empirical work to express inequality

in a population as a function of inequality within groups and inequality between

groups. One important question to address therefore in presence of a finite num-

ber of pay states is how different pay scales impact on within groups and between

groups inequality separately. We show how the answer to this question relates to

the rank of the majorization matrix.

Thirdly, the results of this paper enable us to shed light on an important prob-

2A polytope may be thought of as a generalization of the concept of a polygon in higher

dimensional spaces. An exact definition of a polytope will be given below.
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lem discussed in relation to the measurement of inequality with qualitative data.

It was first recognized by Allison and Foster (2004) and Zheng (2011) that when

the numerical scale defining the economic status of individuals is undetermined,

two different numerical scales may reverse the ordering of a pair of Lorenz curves.

Using the framework of the majorization set, we are able to characterize necessary

and sufficient conditions for Lorenz curve reversals not to occur. These conditions

are expressed as inequalities involving products of the majorization matrix and

vectors defining the vertices of a set that contains the majorization set.

It is evident that in practice incentive, participation, and other institutional

constraints provide theoretical limits to income redistribution (Roberts, 1984; Hin-

driks and Myles, 2013 ch. 18). Incentive contracts typically place restrictions

on the size of increments between successive pay states. Our fourth application

therefore examines how the majorization set may shrink in the light of incentive

considerations in the context of tournament theories of pay and promotion. Our

fifth and final application is to discuss the structure of the majorization set in

the context of the design of a linear income tax scheme. This final application

is motivated by the need to illustrate that applications of the majorization set

are not confined to the design of equitable pay schemes, and that this framework

is equally relevant in all aspects of income redistribution policies such as in the

design of social insurance or differential commodity taxation.

To set the scene for the problem that will occupy us in much of Section 3,

consider the following hypothetical example. Suppose you are manager of two big-

band orchestras, comprising 30 musicians each. The two orchestras differ in that

their brass, keyboard, and rhythm sections have different numbers of individuals.

You cannot change the composition of these two orchestras; but you are free to

choose pay scales (that will apply to both orchestras) subject to two types of

restrictions. Firstly, pay is ordered in a given fashion: a brass musician must not

earn less than a keyboard player, who must not earn less than a rhythm section

musician. Secondly, you must choose the pay structure in a way that the lowest

pay cannot be negative, and the highest pay must be finite. You recognize that the

pay structure you will adopt will impact directly on the welfare of your orchestras,

and you are interested in studying how a particular pay scale will impact on the

ordering of the two pay distributions in terms of inequality. This paper aims at

characterizing the set of pay structures such that the distribution of earnings in

one orchestra is more egalitarian than in the other orchestra.

The next section of the paper contains definitions of some key concepts. Sec-

tion 3 presents the two central results pertaining to the majorization set. Section

4



4 discusses areas of application of the majorization set, while Section 5 concludes

the paper.

2. Notation and definitions

In this paper we study the problem of measuring inequality in the context of an

economy where the economic status of a person  = 1   + 1 is defined over

 = 1   possible states. We associate with these  states a column vector

 = (1  )
0
and we refer to  as a pay scale. There are two assumptions

carried over throughout the results we shall obtain in this paper:

Assumption 1 There are  economic states ordered from 1 (the lowest) to 

(the highest.)

Assumption 2 Any given pay scale  = (1  )
0
is bounded from below by

0 that is 1 ≥ 0 and is bounded from above by a finite number max such that

 ≤ max

That is, any pay scale  is an element of the set of increasing scales:

C = { ∈ R : 0 ≤ 1 ≤ 2 ≤  ≤  ≤ max}  (2.1)

Throughout, the letters       are all used to refer to natural numbers.

We let N Z and R respectively denote the sets of natural numbers, integers and
real numbers. With the exception of N Z and R, we will let S denote a set, 
denote a matrix, and  denote a vector. Unless otherwise specified, all vectors

are implicitly defined as being column vectors. If  and  are two column vectors,

then 0 being the transpose of , 0 is the inner product of  and  If  denotes

a matrix, the null space of  is written as N()We define  = (1  1)
0 as

an −dimensional vector of ones, so that for any vector  ∈ R 
0
 = 0 is

equal to the sum of the elements of  We also define 0 as an −dimensional
vector of zeroes, and 0 as a  ×  matrix of zeroes. The notation  ≤ 0
signifies that every element of  is non-positive.

A distribution is some vector  = (1()  +1())
0. As our judgement on

the level of inequality is anonymous, we adopt the convention that the vector  is

ordered from richest to poorest, and we write  ∈ D where
D = {(1  +1)0 ∈ (1  )+1 :

1 ≥ 2 ≥  ≥ +1} (2.2)

is the set of distributions that is the subject of our study in this paper. It is also

convenient to summarize our data with counts. We define the function count() :
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D → Z1× where the  element of count() equals   being the number

of realizations of state  in the distribution  Stated more simply, count() is

an -dimensional row vector and count()( + 1) is the frequency distribution

associated with 

Each individual  is thus associated with a particular economic state  Thus,

while count() is fixed for each given distribution  ∈ D it is clear that  is a
function of  so that for two distinct scales 1 2 ∈ C it is generally the case
that (1) 6= (2) For this reason, if  denotes another distribution,  =  will

signify that () = () for all  ∈ C or equivalently, count() = count()
Our central interest throughout is in the Lorenz ordering, the Hardy-Littlewood-

Polya relation defined over ( + 1)−dimensional vectors   ∈ D. Indeed, this is
the building block of the income inequality literature, as well as being at the heart

of the majorization literature in the mathematical sciences 3. For a given  ∈ C,
 has less inequality than  written () ≺ () if and only if the following + 1

conditions are satisfied:

X
=1

() ≤
X

=1

()  = 1   (2.3)

+1X
=1

() =

+1X
=1

() (2.4)

We call the above set of equations the +1 partial sums. Note that given the above

definition, either () ≺ () () ≺ () or () and () are not comparable,

in which case we write () k ()
Because the above partial sums define a system of +1 linear inequalities in the

vector  it is possible to express them in compact matrix notation. Specifically,

letting  denote an × matrix and letting  denote an -dimensional row vector,

the inequalities (2.3—2.4) may be written as follows:

 ≤ 0 (2.5)

 = 0 (2.6)

3Beyond the measurement of inequality in the social sciences, the majorization ordering finds

many applications in the mathematical sciences. These include combinatorial analysis, linear

algebra and eigen-value analysis, probability and statistics as well as geometric inequalities. See

Ando (1994) for a survey, as well as Marshall et al. (2010).
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To clarify this notation, it is useful to consider a simple example.

Example 1 Assume there are four individuals ( + 1 = 4) and  = 6 pay

states and consider two distributions  = (5 5 3 2)
0 and  = (6 4 4 1)

0
Then in this context, the pay scale  ∈ C renders () more egalitarian than ()
provided the following four inequalities are satisfied:

5 ≤ 6 (2.7)

25 ≤ 6 + 4 (2.8)

25 + 3 ≤ 6 + 24 (2.9)

25 + 3 + 2 = 6 + 24 + 1 (2.10)

These inequalities are easily expressed in the matrix form (2.5-2.6) where in this

context the matrix  has three rows, six columns, and is easily obtained:

 =

⎛⎝ 0 0 0 0 1 −1
0 0 0 −1 2 −1
0 0 1 −2 2 −1

⎞⎠  (2.11)

while  is the row vector

 =
¡ −1 1 1 −2 2 −1 ¢  (2.12)

°
Consider then summing up the highest  incomes in each distribution, and

taking their difference. This difference is clearly a linear function of , and can be

written as
P

=1

[()− ()] = 11 + · · ·+  The row vector (1  )

then defines the  row of the majorization matrix  Likewise by writing
+1P
=1

[()− ()] = 11 + · · ·+  the scalars 1 · · ·   are the elements
of the row vector  We formally define in the appendix of the paper a function

Φ : D×D −→ Z× that maps  and  to the matrix  and we write  = Φ( )

Likewise, we define a function ∆ that maps  and  to the row vector  = ∆( )

We shall refer to the image  of the map Φ as the majorization matrix. As this

matrix plays a central role in our analysis below, we first gather some properties

of this matrix in the following lemma.

Lemma 2.1 (properties of the majorization matrix) Let the majorization

matrix  = {} with  row  = (1  ) denote the image of ( ) via

the map Φ. Then, there holds the following:
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[1]  = 0 where   an -dimensional vector of ones.

[2]  = 0 if and only if  = 

[3] 1 ≤ dimN() ≤ − 1 for all  6= 

[4] Let  = Φ( ) and  = Φ() Then  = +

[5]  ∈ {−  0  } for all  = 1  .
[6] For all  = 1  − 1 if  = (0  0) then +1 ∈ {−1 0 1} and

at most two elements of +1 are different from zero.

[7] (1  ) = (+11  +1) if and only if +1 = +1.

Property [2] states that  is generally a non-zero integer matrix, and is

only identically zero when  equals  [4] is a property of linearity of the map

Φ( ) [5] indicates that any element of the  row of  is no smaller than −
and no larger than  On the other hand, [6] reveals that if the ( − 1) row
of  is equal to zero, then each element of the  row takes one of three values:

−1 0 and 1 [7] indicates that the  and ( + 1) rows of  are identical

when the elements +1 and +1 of the vectors  and  are identical. Finally,

[1] and [3] together indicate that the rank of  cannot exceed − 1, and
that the vector of ones  lies in the null space of 

The set of solutions to a system of linear inequalities in R; { ∈ R :  ≤ }
where  is an × matrix, is defined as a polyhedral set. Note that, by definition,

every polyhedral set is the intersection of a finite number of closed half-spaces,

and accordingly is a closed convex set. The convex hull of a finite set of points is

called a polytope, or convex polytope, in this paper.

Let S be a set in R A point  in S is called an extreme point, if  cannot
be expressed as a convex combination of any two other elements of S That is,
 =  + (1− ) with   ∈  and  ∈ [0 1] entails that  =  =  We shall

make repeated use of a theorem pertaining to convex sets, that we shall refer to as

Minkowski’s theorem. The theorem states that every closed, bounded and convex

set S ⊆ R is equal to the convex hull of its extreme points. The extreme points

of convex polytopes are commonly referred to as vertices 4. Further notation and

definitions, specific to particular sections of the paper, will be introduced where

needed.

4A triangle and its interior for instance is a convex polytope in R2 and its three vertices are
the points of intersection of its three edges.
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3. The majorization set

Our first task in this paper is to characterize the majorization set C ⊆ C such
that () ≺ () for all  ∈ CWe shall approach this task by examining first the
geometry of the set C We shall then study an intermediate set S ⊆ C, defining
the set of scales that render () and () two distributions of the same sum

total. Clearly the majorization set C is a subset of S. It turns out however
that S has all the relevant geometric properties of the majorization set that are
of interest to us. Nonetheless, S is considerably simpler to characterize than
C

3.1. The set of increasing pay scales and related subsets

Consider first the set C This set is a bounded and closed set in R It is also a

convex set. Specifically, C is an −dimensional simplex with + 1 vertices. The

set V(C) of vertices of C has the following elements:

V(C) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
0
...

0

0

⎞⎟⎟⎟⎠ 

⎛⎜⎜⎜⎝
0
...

0

1

⎞⎟⎟⎟⎠ 

⎛⎜⎜⎜⎝
...

0

1

1

⎞⎟⎟⎟⎠  

⎛⎜⎜⎜⎝
1
...

1

1

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭  (3.1)

with any  ∈ C being the convex combination of the  + 1 elements of V(C)
When  = 2 C is a triangle with vertices max(0 0)0 max(0 1)0 and max(1 1)0
Set the value of max at unity. Figure 1 provides a sketch of the set of increasing

scales C when  = 3 and max = 1 C has four vertices: 1 = (0 0 0)0 2 =
(0 0 1)0 3 = (0 1 1)0 and 4 = (1 1 1)0 The set C has a pyramidal shape.
The convex hull of a subset of vertices defines a face of the simplex C, and the
vertices (taken individually) are commonly referred to as the zero-dimensional

faces (Ziegler, 1995; ch. 1). The convex hull of any three vertices spans a triangle,

while the convex hull of the four vertices spans the entire set C in three-dimensional
space. Note furthermore that every subset of C (such as the majorization set C)
is by definition also a bounded set in R

Let  and  be two elements of D Clearly, a necessary condition for () to be
more egalitarian than () is that () and () are two distributions of a given

sum total. Accordingly, define the set

S :=
(
 ∈ C :

+1X
=1

() =

+1X
=1

()

)
 (3.2)

9



This set is a subset of the null space

N(− ) := { ∈ R :  = 0}  (3.3)

that is, the set of vectors  that equate the sum totals of () and () Geometri-

cally, N(− ) is a hyperplane that is generated by − 1 linearly independent
vectors in R The set S however is the intersection of N(− ) and the set

of increasing pay scales C As such, S is at most generated by  − 1 linearly
independent vectors, and we write the inequality:

dimS ≤ dimN(− ) = − 1 (3.4)

Because the majorization set is a subset of S, we may define C as follows:

C = { ∈ S : () ≺ ();   ∈ D} (3.5)

Also, because we do not fix the scale  defining the distributions  and , there

remains the possibility that some increasing scales order  to be more egalitarian

than , while other scales reverse the majorization ordering. Thus, in what follows

we shall also define the set of scales

C := { ∈ S : () ≺ ();   ∈ D}  (3.6)

We shall call C the dual majorization set.
Finally, there remains the possibility that some scale  ∈ S does not order 

and  This is the set Ck := S\(C ∪ C) and we have that S = C ∪ C ∪
Ck.

3.2. Characterization of the majorization set

The approach we shall follow here will be to characterize the majorization set in

relation to its vertices. This is a well-treaded path in the mathematical sciences.

For instance, the set of doubly stochastic matrices is commonly referred to as

the Birkhoff polytope, and the Birkhoff-von Newman Theorem states that the

vertices of the Birkhoff polytope are the set of permutation matrices (Barvinok,

2002; pp. 56-57). Consider the context of majorization with continuous data,

where  and  are vectors and  is a doubly stochastic matrix. The set of

doubly stochastic matrices  such that  =  is commonly referred to as the

majorization polytope. Brualdi (1984) provides a characterization of this set in
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relation to its vertices. Dahl (1999) similarly extends the results of Brualdi (1984)

in the context of matrix majorization.

We begin by stating a lemma pertaining to the properties of S The proof of
this result is simple and helps to clarify the geometric properties of the majoriza-

tion set.

Lemma 3.1 Consider two distributions   ∈ D Then the set of pay scales
S, such that  and  are two distributions of a given sum total, is a non-empty

convex polytope.

Proof Let  = ∆( ) and construct the following matrix:

1 :=

µ −


¶
(3.7)

Then, some pay scale  satisfies the condition  = 0 if and only if 1 ≤ 0 The
restriction on the vector  to belong to the set of increasing pay scales may be

conveniently expressed as 2 ≤ (0 max)
0 where the matrix 2 ∈ Z(+1)× is

defined as follows:

2 :=

⎡⎢⎢⎢⎢⎢⎣
−1 0 0 · · · 0

1 −1 0 · · · 0
. . .

. . .
...

0 · · · 0 1 −1
0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ (3.8)

Next, construct the following (+ 3)×  matrix:

 :=

µ
1

2

¶
(3.9)

and define the vector  := (0+2 max)
0 Then it is clear that S = { ∈ R :

 ≤ } Thus, S is a polyhedral set. This set is a bounded, closed and convex
subset of R It is defined as the solution to a finite system of linear inequalities.

Accordingly, S is a convex polytope.
Note finally that the set S is generally non-empty. Consider a constant 

such that max ≥  ≥ 0 Then, the constant vector  := (  )0 will always
satisfy the system of inequalities  ≤ , and hence  is always an element of

S ¤
In simple terms, the lemma reveals that the subset S of the set of increasing

pay scales is a solution to a system of +3 linear inequalities in the vector  As
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a result, S is a convex set, taking the form of a polytope 5. Let  denote the

following ( + + 3)×  matrix:

 :=

µ




¶
(3.10)

The result below summarizes the key geometric properties of the sets S and
C, as well as provides the founding block of all subsequent results obtained in
the paper. In particular, it reveals that the majorization set is also a non-empty

convex polytope:

Theorem 3.2 Consider two distributions   ∈ D and let S and C re-
spectively denote the sets of pay scales that equate the sum totals of the two dis-

tributions and the majorization set  Then:

() The set C is a non-empty convex polytope defined as the solution to a
system of linear inequalities

 ≤
µ
0++2
max

¶
 (3.11)

() the origin 0 and the vector  := max where  is an −dimensional
column vectors of ones, are both vertices of S and C
() every vertex of S and C other than 0 is of the form  = max



where   is the cumulative distribution of some random variable defined over 

states.

Before we take up each of these three statements in turn, we first mention some

related results from the mathematical sciences. In the context of continuous data,

Dahl (1998) provides a similar characterization of extreme points (and rays) when

the set C takes the form of a convex polyhedral cone. In the context of matrix

majorization with continuous data (i.e. where  and  are matrices), Dahl (1999)

similarly characterizes the vertices of the majorization polytope C consisting of
the row stochastic matrices  such that  = 

Consider now statement () of Theorem 3.2: because C is a non-empty closed
and bounded convex set, Minkowski’s theorem entails that this set may be charac-

terized as the convex hull of its vertices (see Corollary 3.3 below). Next, consider

() and any scalar  ∈ [0 max] Because the constant pay scale  = (  )0
5The result also arises naturally from a geometric perspective as the outcome of constructing

S as the intersection of a hyperplane with a simplex (see Ziegler 1995, ch. 1 for a discussion).
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is always an element of both S and the majorization set, and can be expressed
as an appropriate convex combination of 0 and the vector  it is clear that the

latter two vectors are both vertices of the sets S and C Finally, () reveals
the structure of every vertex of these two sets (other than the origin), as being the

product of max and the cumulative distribution of some random variable defined

over  states. This property is inherited from the ordering 1 ≤ · · · ≤  of the

elements of the vector  In other contexts where the elements of the policy vector

are not naturally ordered, this last result () need no longer hold 6.

Geometrically, vertices are boundary points of a given set; hence vertices may

be also viewed as the boundaries of redistribution policies. That is, we may view

the vertices of C as the limits of pay policies that make the Lorenz curve of
 () more egalitarian than that of  (). Because there are  + + 3 inequalities

defining the majorization set (i.e. the number of rows of the matrix  of (3.10)),

C will possess a finite number of such vertices. Specifically:
Corollary 3.3 The set of vertices {1  } = V(C) provides a minimal

representation of the majorization set C in the sense that:
() C is the convex hull of {1  } and
() each  ∈ C is a convex combination of a family of at most  affinely

independent points from {1  }
The description of V(C) as providing a minimal representation of the set C
is taken from Lay (1982, pp. 116-117); in words it signifies that knowledge of the

set of  points defining V(C) is all that we require to define all the elements
of the majorization set C
We next consider a simple example that illustrates Theorem 3.2 and its corol-

lary 3.3.

Example 2 Let there be  = 3 states,  = (2 2 1) and  = (3 1 1)

Here S is the set of increasing scales such that for each  ∈ S there holds
3P

=1

() =
3P

=1

() We first construct the majorization matrix  as well as the

6We return to this point in Section 4.5 where we examine the majorization set in relation

to a policy vector consisting of a universal benefit and a uniform tax rate, that define a linear

income tax schedule.
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matrices 1 and 2 of Theorem 3.2 to obtain here:

 =

µ
0 1 −1
−1 2 −1

¶
1 =

µ −1 2 −1
1 −2 1

¶

2 =

⎛⎜⎜⎝
−1 0 0

1 −1 0

0 1 −1
0 0 1

⎞⎟⎟⎠
Stacking vertically  1 and2 allows us to construct the matrix  of Theorem

3.2. On such basis, we easily find that S = { ∈ C : 3 = 22−1}We can also
obtain the vertices of the set C 7. These are 1 = (0 0 0)0 2 = max(0 12 1)

0

and 3 = max(1 1 1)
0

In Figure 2, we draw once again the set C of Figure 1, and we represent the
three vertices 1 2 and 3 where we fix max at the value 1 In accordance with

Corollary 3.3, these three vertices span the set C here a triangle, in the sense
that C is the convex hull of these three points (the shaded area in Figure 2.)
With the exception of the origin (the vertex 1) the vertices 2 and 3 are of the

form of cumulative distribution functions for a random variable defined over  = 3

states.

Any  ∈ C is expressible in the form of a convex combination
3P

=1


 of the

three vertices. We obtain for instance the following two elements of the majoriza-

tion set C:  = max(050 075 100)
0 = 05(2+3) and  = max(000 025 050)

0

= 05(1 + 2) It may be verified that () ≺ () and also that () ≺
() °

3.3. Separation result

Theorem 3.2 informs us that the set of pay scales  that render ()more egalitar-

ian than () is a convex set. Applying the same logic, but defining a majorization

matrix  := − any scale  ∈ C that renders  more egalitarian than  satisfies

the set of inequalities  ≤ 0 For this reason it follows also that C is a convex
polytope, and accordingly a convex set.

7A systematic method for deriving the vertices of the majorization set is discussed in the

appendix proof of Theorem 3.2.
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For this reason, it may be useful to conclude this section of the paper with a

result that commonly arises in the analysis of convex sets, namely a separation

result. Let A and B denote two subsets of the set of increasing pay scales C If
there exists a linear functional  : C → R (where  is not identically equal to zero)
and a number  ∈ R such that () ≤  for all  ∈ A and () ≥  for all  ∈ B,
we shall say that the two sets A and B are separated by a hyperplane in C.
To state this separation result, we need to draw an important distinction

between increasing pay scales  that belong to the boundary of C from those that
belong to the interior of this set. Accordingly, we first define the interior of C as
the following subset of R:

C = { ∈ C : 0  1  2  · · ·    max} (3.12)

The boundary of C, denoted C is then the set C\C The result below summarizes
the geometric structure of the two sets C and C in relation to one another, and
as subsets of the set of increasing pay scales:

Proposition 3.4 Let  and  denote two distinct distributions, and let  =

(1  ) denote a row of the majorization matrix  = Φ( ) such that  6= 0
Then the hyperplane

H = { ∈ C :  = 0} (3.13)

separates the majorization sets C and C Furthermore, at most one of the two
majorization sets has points in the interior of C, while the other majorization set
lies on the boundary of the set of increasing pay scales.

That is, the above result informs us that if there are two pay scales  and  such

that () ≺ () and () ≺ () it must be that at least one of the two pay

scales  and  is an element of the boundary of C That is, at most one of the two
majorization sets has points  ∈ C with the property that the pay +1 associated
with pay class + 1 is strictly greater than  while the other majorization set is

contained in the boundary of the set of increasing pay scales. Finally, any non-

zero row of the majorization matrix defines the coordinates of a hyperplane H
that separates the two convex sets C and C

4. Applications of the majorization set

Below we shall consider various applications of the framework we have developed

in Section 3, together with its central results, Theorem 3.2 and Proposition 3.4.
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4.1. Lorenz-preserving transformations of the pay scale

Because C is a convex set, any function on C that preserves the Lorenz ordering of
 and  must, and can only, be a function  : C → C. Specifically, for some  ∈
C, we can view a new pay scale  ∈ C as a convex combination of  and some
other element  ∈ C such that  (; ) = { ∈ [0 1]   ∈ C :  =  + (1− ) } 
Note that because  and  are themselves convex combinations of the vertices of

C, we have at once:
Corollary 4.1 Let  and  be two distinct distributions, and let  be an

element of C such that  () ≺  (). Then a function  : C → C maps  to

a new scale  such that  () is more egalitarian than  () if and only if  is a

convex combination of  and the vertices of C.
As such for instance, if  = max (1  1)

0
, then we have that  =  + (1− ) 

is also an element of C. Specifically, for  = 1  − 1, we have that +1 >
+1. This sort of transformation has been discussed by Moyes (1994) in the

income inequality literature:  is said to dominate  in relative differences, and in

turn here the Lorenz curves of  () and  () will be ordered in the same fashion

as  () and  ().

4.2. Inequality between groups

If a distribution  exhibits a low level of inequality and  has a high level of

inequality under an initial scale ◦, a new scale 1 may bring the Lorenz curves of
 (1) and  (1) closer by making  (1) and  (1) two distributions with a high

level of inequality where  (1) ≺  (1)  Conversely, a new scale 1 may entail

two Lorenz curves  (1) and  (1) close to the equality line with  (1) ≺  (1).

The scope for reducing between groups inequality in the context of discrete data

may be examined formally by studying the null space of the majorization matrix

. The null space of the majorization matrix is the set of pay scales that equate

the  partial sums (2.3) to zero. Some vectors in the null space of the majorization

matrix may belong to the set of increasing pay scales C while others may not. It
is clear that it is the former set, namely N() ∩ C that is of interest to us.
The vertices of C all lie on the boundary of C It is also the case that those

elements of the null space of  that belong to C must lie on the boundary of the
set of increasing scales:

Proposition 4.2Consider two distributions   ∈ D, and let the majorization
matrix  denote the image of ( ) via the map Φ( ) Consider some pay scale
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 ∈ C. Then  ∈ N() if and only if  = 0

In simple terms, a pay scale that equalizes the Lorenz curves of  and  will

typically have at least two identical elements if  and  are distinct distributions.

Put differently, if  6=  the Lorenz curves pertaining to these two distributions

may be brought to equality using some increasing pay scale. The scope for such

policies is informed by the rank of the matrix : if rank() =  − 1, then
essentially the only scale that equates the Lorenz curves of  and  is of the form

 = (  )
0
where 0 ≤  ≤ max. If rank() =  − , then the null space of

 has  linearly independent -dimensional vectors, of which at least one must

belong to C 8. In other terms, the lower the rank of the majorization matrix the

more flexibility there is for the policy maker to reduce between groups inequality:

Corollary 4.3 Consider two distributions   ∈ D, and let the  = Φ( )

denote the majorization matrix. Furthermore, let N() ∩ C denote the subset
of pay scales of the null space of  that also belong to the set of increasing pay

scales C and let  ∈ [0 max] be a scalar. Then,
() If dim(N() ∩ C) = 1 between groups inequality, as measured by the

distance between Lorenz curves, is only zero for uniform pay scales  = (  )0
At  = (  )0 between groups inequality and within groups inequality vanish
simultaneously.

() If dim(N() ∩ C)  1 between groups inequality is zero for pay scales
other than  = (  )0. For such pay scales other than , between groups

inequality may vanish while within groups inequality persists.

Stated differently, when the null space N() ∩ C is of dimension one, policies
that would equate Lorenz curves do so by confounding both Lorenz curves with

the equality line. On the other hand, when the null space is of higher dimension,

both Lorenz curves may be confounded while remaining distinct from the equality

line.

4.3. Lorenz curve reversals

Having spent some time discussing the scope for equating Lorenz curves, it is

natural to take this discussion one step further, in order to inquire about the

8Returning for instance to Example 2, we may observe that N() ∩ C is the set

{ ∈ C : 3 = 2 = 1}  This set lies clearly on the boundary of C Since rank() = 3 − 1,
the null space is entirely characterized by vectors of the form  = (  )

0
 See Example 1 for

a majorization matrix with a null space of higher dimension.
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scope for Lorenz curve reversals. It turns out in fact that the result of Theorem

3.2 can be used to shed light on an important problem that was first discussed in

the literature on the measurement of health inequality (Allison and Foster, 2004;

Zheng 2011). It was recognized by these authors that when the scale defining the

economic status of a person is undetermined, two different increasing scales  and

 may reverse the Lorenz ordering of two distributions.

The framework developed in this paper is well suited to revisit this problem:

specifically, starting from a scale ◦ ∈ C such that  (◦) ≺  (◦), any new scale
1 ∈ C will preserve the Lorenz ordering of  (◦) and  (◦) if and only if 1 is a
convex combination of the vertices of C. Conversely for a scale  ∈ C to reverse
the ordering of  and  such that there results  () Â  () or  () k  ()  a

necessary condition is that (S \ C) is a non-empty set; in other terms,  must
be selected from a set of scales that do not allow  to be more egalitarian than .

The above reasoning can be taken one step further, to characterize conditions

such that the reversal of Lorenz curves never occurs within the set of scales that

make  and  two distributions of a given sum total. As C is a subset of S, the
condition sought after is that S and C are equal sets: when S = C there
results that S \ C is an empty set. Fortunately, equality of the sets is easily
verified with the help of the vertices of S:
Proposition 4.4 Let  and  be two distributions in D and let  = Φ( )

denote the majorization matrix  Then,  () ≺  () for all scales  ∈ , equiv-

alently C = S if and only if for every vertex  of the set S there holds the
inequality

 ≤ 0  = 1   (4.1)

Stated differently, when for every vertex  of S, the greatest element of the
vector  is non-positive, the Lorenz curve of  () will lie above that of  () 

for any pay scale that renders () and () two distributions of a given sum

total.

To illustrate the practical relevance of the above result, we continue with our

examination of Example 1 of Section 2.

Example 1 (continued) Return to Example 1 where  = 6 and where

 = (5 5 3 2)
0 and  = (6 4 4 1)

0 The resulting majorization matrix 

and vector  are given in (2.11) and (2.12). We are interested in characterizing

vectors  ∈ C that allow us to order () and ()

Referring to Proposition 4.4, there are two vertices of S 1 = max(0 0 0 0
1
2
1)0 and 2 = max(0 0 0

1
2
1 1)0 such that 1 = max(−12 0 0)0 ≤ 03 and 2 =
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max(0
1
2
0)0 ≥ 03. Proposition 4.4 then alerts us to the possibility that there may

be two scales   ∈ S such that () ≺ () while () ≺ () or () k ()
This is clearly so here, as 1 ∈ C and 2 ∈ C For instance, if we set max = 10
it is easily verified that  = (05 2 3 4 5 65)0 ∈ C while  = (2 2 3 4 5 5)0 ∈ C
It is instructive to characterize the sets C and C of this example. Firstly,

we have

C =
½
 ∈ C :  = 0 and 5 ≤

µ
4 + 6

2

¶¾
(4.2)

For the set of scales such that () ≺ () we obtain

C =
½
 ∈ C : 5 = 6 1 = 2 and 4 =

µ
3 + 5

2

¶¾
(4.3)

Note that from the separation result of Proposition 3.4, at most one of the two

sets C and C can have points in the interior of C Since  = (05 2 3 4 5 65)0
is an element of the set (4.2), it is the case that C has a non-empty intersection
with C. However, because every scale in (4.3) must satisfy the conditions 5 = 6

and 1 = 2 it is clearly the case that C belongs to the boundary of the set of
increasing scales. °

4.4. Incentives and the majorization set

Informational assumptions regarding (1) what employers can observe about their

employees’ characteristics and effort levels, and (2) what employees can observe

about the results (profits, surplus etc.) of corporations will typically set limits to

what pay scales can be implemented in practice. That incentive considerations

set limits on the extent of redistribution that is feasible is a widely discussed and

documented phenomenon (Roberts, 1984; Hindriks and Myles, 2013, ch. 18). Our

purpose here is to discuss how the majorization set shrinks when it is restricted

to certain incentive compatible pay structures.

When incentive constraints are linear (see below for an example), they may

be generally expressed in the form { ∈ C :  ≤ 0} The subset of incentive
compatible pay scales of the majorization set may then be written in the form

I := { ∈ C :  ≤ 0} (4.4)

Some models of tournament theory for instance entail an increasing pay structure

with pay increments rising with seniority (see Section 6.4 of Cahuc et al. 2014).
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Such incentive compatible pay scales have the property that 2 − 1 ≤ 3 − 2
≤ · · · ≤ −−1; and find considerable support in empirical investigations (Baker
et al. 2014). The resulting property of increasing pay increments can easily be

translated into the system of −2 linear inequalities of the form ≤ 0 discussed
above 9.

The insight provided by tournament theory is to enable us to relate the de-

terminants of the pay increments to the contractual environment of the firm and

to workers’ risk preferences. Specifically, the pay increments may be shown to

rise with the standard deviation of the unobserved component of workers’ effort

distribution in a given pay class, and also with the number of workers  who

occupy this class . Furthermore, when workers are risk averse (rather than risk

neutral), such theories predict that pay increments should fall, rather than rise,

with seniority.

4.5. Optimal taxation

An examination of the optimal tax literature is a useful setting for thinking about

extensions to the framework developed here. Specifically, the context discussed

below allows one to consider alternative applications of the majorization set, where

for instance the set refers to policy parameters rather than ordered pay scales.

Consider then a simple case where there are  = 2 ordered states pertaining to

productivity levels 1 and 2 and where 0  1  2  max. Each individual has

a time endowment of one unit so that 1 and 2 also denote the full incomes of the

1 and 2 workers of each type, and ̄ = (11 +22)(1 +2) is the aver-

age productivity level. A linear income tax maps the distribution of productivities

(full incomes) to a distribution of consumption (i.e. net earnings), with two con-

sumption levels  =  + (1−) for  = 1 2. The parameter  ∈ [0 1] captures
the distortionary effect of taxation and 1− is the (constant) marginal propensity
to spend on leisure (see for instance Mirrlees, 1971 and Atkinson, 1973). Here  is

a lump sum universal benefit and  is the uniform income tax rate. It is clear that

1 and 2 are fixed here, and that only the  vector is to be chosen (via choice

of values for the universal benefit and tax rate). The particular choice of policy

instruments  and  will depend among other factors on () the level of inequality

9For instance, if there are say  = 4 seniority levels, the system of inequalities takes the formµ −1 2 −1 0

0 −1 2 −1
¶ ⎛⎜⎜⎝

1
2
3
4

⎞⎟⎟⎠ ≤ µ 0

0

¶
.
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in the distribution of productivities (the difference between 2 and 1) () the

population shares of low and high productivity workers (1 and 2) and () the

distortionary effect of taxation (how large 1−  is) 10.

Perhaps the most interesting insight this exercise can offer is the need to recog-

nize that in some instances it may be more illuminating to express the inequalities

directly in terms of the policy parameters that define the relevant set of pay scales

such that the distribution of post-tax earnings (consumption) is more egalitarian

than the distribution of productivities (full incomes) In doing so, however, we

turn our attention to expressing the 1 + 2 partial sums  ≤ 0 in a more

detailed form, replacing  by functions of  1, 2 1 and 2 (the data of the

redistribution problem) as well as  and  (the policy instruments). We come also

to accept that the sum total of the distribution of post-tax earnings is lower than

that of full incomes when   1 This leads us to choose  and  instead to equate

the mean post-tax earnings level and  that is a share of the mean, rather than

the mean, of the distribution of productivities. In turn, this entails writing the

partial sums as a product of the majorization matrix and two other matrices:

⎛⎝ 0 2 0 −2

1 2 −1 −2

−1 −2 1 2

⎞⎠
⎛⎜⎜⎝
1 1 0

1 2 0

0 0 1
0 0 2

⎞⎟⎟⎠
⎛⎝ 

1− 

1

⎞⎠ ≤ µ 0

0

¶
 (4.5)

Note here the simple form of the majorization matrix that arises when comparing

a fixed distribution  under two different income vectors  (full income) and 

(post-tax earnings). The above formulation has the advantage of making the ma-

jorization matrix appear clearly as an integer matrix that satisfies the properties

of Lemma 2.1. But it is also the case that this formulation now requires the in-

troduction of an additional matrix (the middle matrix) parametrized by a subset

of the data of the redistribution problem (the distortionary effect of taxation and

the vector of productivities).

The constraints on the policy parameters are that (1)  equals  and (2)

that  lies between 0 and 1 Note that the first of these conditions is implied by

the second and third rows of (4.5). Upon substituting  for  the inequality

 ≥ 0 is implied by the first inequality of (4.5). Finally, the inequality  ≤ 1

10There are additional important considerations needed in order to select the Pareto efficient

level of  and   These include redistributive objectives, viz the parameterization of the social

welfare function embodying society’s preferences, and the share of total income that is committed

to subsistence expenditure. See Deaton (1983) and Salanié (2003).
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is a liability constraint: it precludes tax authorities from levying more tax than

workers’ earnings. The resulting majorization set in this context becomes the

set of ordered pairs ( ) that lie within the line segment with vertices (0 0)

and (̄ 1) The majorization set expands when the average productivity level

increases, and when the distortionary effect of taxation diminishes. Note finally

that because ( ) is not an ordered vector in the way pay scales are, the first

statement of Theorem 3.2 holds, but () and () of the same theorem no longer

apply in the context of the linear income tax.

5. Conclusions

This paper has examined the problem of comparing distributions of a variable

defined over a finite number of pay states, from the perspective of the Lorenz

ordering. The particular problem we have chosen to address was that of charac-

terizing the set of pay scales that allow for a Lorenz ranking of two distributions.

This particular perspective has enabled us to address related questions of inter-

est, such as the scope for reducing between groups inequality, as measured by the

distance between Lorenz curves, and the extent to which Lorenz curve reversals

may occur under two different pay scales.

We have shown that the problem of characterizing the set of pay scales that

allow for a comparison of Lorenz curves in presence of a finite number of economic

states has for solution a particular type of convex set known as a polytope. That is,

the majorization set is a convex set, defined as the convex hull of a finite number of

points, known as the vertices of the set. The significance of the above result is the

following: even though the set of pay scales that allow for an ordering of Lorenz

curves has an infinite number of points, this set has a minimal representation in

terms of a finite number of vertices, and every pay scale in the majorization set

arises as a convex combination of a subset of these vertices. The vertices are then

jointly sufficient statistics for generating the majorization set.

Central to this result and its applications, is a majorization matrix that we

have introduced in the paper, that allows us to express the partial sums (inequal-

ities) defining Lorenz dominance. Our second result was to apply a well-known

result in convex analysis, the separation theorem, to show that in general the

majorization set and its dual, the majorization set that reverses the ordering of

Lorenz curves, may be separated using a given number of hyperplanes, the coor-

dinates of which are the non-zero rows of the majorization matrix.

Our final application in Section 4 gave a brief overview of the majorization set
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in the context of the design of a linear income tax scheme consisting of a lump

sum transfer and a unique marginal tax rate. There are clearly many other areas

of application of the majorization set that may form the basis of future research,

such as for instance its analysis in the context of differential commodity taxation

and social insurance schemes more broadly.
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6. Appendix

This appendix gathers the proofs of the results stated in Sections 3 and 4, together

with the proof of Lemma 2.1. We begin with a formal definition of the function

Φ that maps D ×D to majorization matrices.
For 1 ≤  ≤  define the zero-one matrix Γ = [ 0] where  is the

−dimensional identity matrix and where 0 is a  × ( + 1 − ) matrix of ze-

roes. Then Γ is a × (+1) selection matrix such that Γ = (1  )0 for all
 ∈ D In words, Γ is the vector comprising the  richest individuals from the

distribution  Observe also that Γ1 = 1 and Γ = (1  )
0

We next define the (row) vector function  : D ×D −→ Z1× as follows:

( ) := count(Γ)− count(Γ)  = 1   (6.1)

We then construct the  ×  matrix Φ( ) with  row given by the function

( ) Thus, we define for all   ∈ D the matrix function

Φ( ) :=

⎛⎜⎝ 1( )
...

( )

⎞⎟⎠ (6.2)

such that Φ( ) maps D ×D into the set of  ×  integer matrices Z×
We also define for   ∈ D

∆( ) := count()− count() (6.3)
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where ∆ maps D ×D into Z1×
For the proof of Lemma 2.1, we shall require to define E as the set of  × 

zero-one matrices such that each row  = (1  ) of a matrix  ∈ E has
exactly one unique element equal to 1 and all other elements equal to 0 :

E = { ∈ Z× :  ∈ {0 1}
X
=1

 = 1 for all  = 1  } (6.4)

Recall that Γ = [ 0] is a ×(+1) selection matrix, such that for any  ∈ D and
any  ∈ C Γ() = (1()   ())0. It follows that Γ() may be expressed
as Γ() =  where  ∈ E is a zero-one matrix.
Let  ∈ Z× denote a lower triangular matrix with element  = 1 for all  ≥ 

and  = 0 for all    Then, for any  ∈ R  is the vector which cumulates

the elements of  and has for  component 1 + +  Accordingly,

 =

⎛⎜⎝  (Γ1())
...

 (Γ())

⎞⎟⎠ (6.5)

Likewise define  ∈ E such that (1()   ())0 =  Defining the  × 

integer matrix

 :=  − (6.6)

it may readily be observed that  = Φ( ) may equivalently be constructed as

 =  (6.7)

i.e. the product of two integer matrices.

Observe also that since  is a full rank square matrix, N( ) = 0 Accord-

ingly, − and  =  (−) are matrices of identical rank. It follows then

that for any  ∈ C we have  ∈ N() if and only if  ∈ N( −)

Note furthermore that for the first row of  and  we have the equality (11
  1) = (11   1) while,

(21  2) = (11 + 21  1 + 2)

= (11 + + 1) + (21 + + 2) (6.8)

By repeated application of the above identities, we obtain for all  = 2   :

(1  ) = (−11 + + −1) + (1 + + ) (6.9)
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We are now ready to proceed to the proof of Lemma 5.1.

Proof of Lemma 2.1 (1) Consider the  row of  If  =  then

the  row of  is equal to zero. If on the other hand  =  and  =  with

 6=  then  = 1  = −1 and  = 0 for all  6=   In both cases, we

find that
P
=1

 = 0; accordingly,  =  = 0

(2) Since  =  where  is a full rank matrix,  = 0 entails  = 0

In turn this entails that  =  Conversely, if  =  then  = 0 and  is a

matrix of zeroes.

(3) From (1) we have that  ∈ N() so that dimN() ≥ 1

Now assume that 1 = −1 1 =  and for all  = 2   we have  =  Then

1−1 = 1 1 = −1 and all other elements of  are equal to zero. Since the

resulting matrix has rank 1 and  columns, its null space is of dimension − 1
Therefore it is the case that if  6=  then dimN() ≤ − 1
(4) Let  = Φ( ) and  = Φ() Then,  =  ( −) =  [( −

) + ( −)]. That is,  = +

(5) Consider two vectors  and , such that 1 = · · · =  =  and

1 = · · · =  =  Let  be an element of the set of indices {1  } If  =  and

 6=  then  =  If  =  and  6=  then  = − Note also that if  = 

then  = 0 Any  is thus bounded by the values − and 

(6) Since   are elements of E  it follows from (6.9) that if (1  )
= (0  0) then (+11  +1) can only have at most two non-zero elements,

and that +1 ∈ {−1 0 1}
(7) The  row of  is equal to zero if and only if  =  Thus, from

(6.9) it follows that (−11  −1) = (1  ) if and only if  = . ¤
Proof of Theorem 3.2 () Let  = Φ( ) denote the image of ( ) via the

map (6.2). Then, a vector  ∈ R satisfies the  first partial sums (2.3) defining

the majorization relation () ≺ (), if and only if  ≤ 0 The  + 1 partial
sums [2.3-2.4] can now be conveniently be expressed as follows:µ



1

¶
 ≤ 0+2

where 1 is the matrix (3.7) of Lemma 3.1. The restriction on the vector  to

belong to the set of increasing scales is also expressed as2 ≤ (0 max)
0 where

the matrix 2 is defined in (3.8). Thus defining  := (0++2 max)
0, we have
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that C = { ∈ R :  ≤ } where  is the matrix of (3.10). Thus, C is a
polyhedral set. This set is bounded, closed and convex. Also, because  has a

finite number of rows, C is a convex polytope.
Note furthermore that the same argument as in the proof of Lemma 3.1 can be

used to show that C is generally a non-empty set in R and that its dimension

is at least equal to 1.

() Turning to the vertices of C consider first the vector  = max Since 

satisfies the system of inequalities (3.11) of Theorem 3.2, it follows that  ∈ C
On the other hand,  cannot be obtained as a convex combination of any elements

from the set C\{} It follows that  must be a vertex of C
Next consider vertices other than  = max Let J := {1  } denote a

set of  indices from the set {1 2  ++3} and let  := J( ) and  := J()

denote respectively the -dimensional square matrix and vector constructed using

rows 1   of the matrix  and the vector . From Theorem 2.4.2 of Barvinok

(2002), every vertex of C is the solution  to some system of linearly independent
equations  =  where  ∈ C Consider first the case where  is a vector of
zeroes (that is, max ∈ ; equivalently, the index  +  + 3 pertaining to the last

row of the matrix  is not an element of the set of indices J used to construct

the matrix  and the vector ) Then, since  is a vertex of C it follows that
 is a full rank matrix. Thus, the only solution to  = 0 is the trivial solution

 = 0 and the origin is a vertex of C. Thus () holds.
() Consider next the case where  +  + 3 ∈ J, so that max ∈  Then,

the solution to the system of linearly independent equations  =  is  = −1
a vector of  linear combinations of the elements 0 and max where one such

elements of  is equal to max Since  ∈ C it follows that 0 ≤ 1 ≤  ≤  =

max. Thus,  = max , where  is the cumulative distribution of some random

variable defined over  states.

Now consider the set S From Lemma 3.1, S as C is a convex polytope
contained within C The proof of (− ) in relation to S proceeds exactly as
the above arguments in the context of C ¤
The next lemma states that if there is a pay vector  such that () is more

egalitarian than () and this  is in the interior of C then any  such that ()
is more egalitarian than () must lie on the boundary of C (and vice versa)
Lemma A1 Let   ∈ D with  6= . Assume there is a  ∈ C\C Then

the set C\C is empty. Likewise if there is a  ∈ C\C, then the set C\C
is empty.
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Proof of Lemma A1 Let  be an element of the set C\C and assume, to
the contrary, that there is a + ∈ C\C Since by assumption  6=  it follows

from [2] that  = Φ( ) must be a non-zero matrix. Consider then the first

non-zero row  = (1  ) of this matrix. Then, from [6], there are at

most two indices   ∈ {1  } such that     6= 0  = − and, by
assumption, +  ≤ 0 Since () ≺ () it also follows from [6] that

 = 1 and  = −1 From the assumption that  ∈ C it also follows that
0    

Now since + ∈ C\C it is also the case that + + 
+
 ≥ 0 But since

+ ∈ C this inequality entails that + = +  In turn, 
+
 = + entails that

+ ∈ C in contradiction with the assumption that + ∈ C\C ¤
Proof of Proposition 3.4 Define the integer matrix  := − Then it

follows that the dual majorization set may be defined as C = { ∈ S :  ≤
0} Accordingly, Theorem 3.2 entails that C is a convex polytope. Furthermore,
this set is non-empty as the constant pay scale (  ) for  ∈ [0 max] belongs
to this set.

Next consider a hyperplane H = { ∈ C :  = 0} where  6= (0  0) is a

non-zero row of the majorization matrix  Since any element  ∈ C satisfies
the inequalities  ≤ 0 while any  ∈ C satisfies the inequalities  ≥ 0 the
hyperplane H separates the two majorization sets.

Assume that C has a point  ∈ C Then, from Lemma 1 C\C is an
empty set. It follows that C has an empty intersection with the interior of C.
¤
Proof of Proposition 4.2 (⇒) Let  = 0 where  ∈ C We proceed by

induction on the rows 1   of  to establish that  = 0

Consider first 1 = (11  1) There are (at most) two indices   ∈
{1  } such that 1 + 1 = 0 1 + 1 = 0,  6=  and 1 = 0

for all  6=   If 1 6= 0 then 1 = −1 and 1 + 1 = 0 entails

 =  But this case is ruled out since by assumption  is an interior point of C
Hence we conclude that 1 = 1 = 0 and thus that 1 = (11  1) = (0  0)

Now assume that for row −1 of  we have −1 = (0  0) Then, from [6]
of Lemma 2.1, in row  of  there are again at most two indices   ∈ {1  }
such that + = 0 + = 0,  6=  and  = 0 for all 6=  We

now invoke the same argument as in the case of 1 to establish that  = (0  0)

(⇐) Let  = 0 Then C ⊆ N() and hence C ⊆ N() ¤
Proof of Proposition 4.4 It is clear that C ⊆ S Hence we need to

prove that S ⊆ C if and only if for every vertex of the set S there holds the
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inequality (4.1).

Let V(S) = {1  } Then, since from Lemma 3.1 S is a convex
polytope, Minkowski’s theorem entails that every  ∈ S can be expressed in the
form ⎛⎜⎝ 1

...



⎞⎟⎠ = 1

⎛⎜⎝ 11
...

1

⎞⎟⎠+ · · ·+ 

⎛⎜⎝ 1
...



⎞⎟⎠  (6.10)

0 ≤ 1   ≤ 1 and
X

=1

 = 1 (6.11)

Assume first that S ⊆ C Then this entails from the definition of C that
every  ∈ S satisfies the inequalities  ≤ 0 That is, (11+ · · ·+

) ≤ 0
where 1   satisfy the conditions of (6.11). In particular, for  = 1 and

 = 0 for all  6=  we must have  ≤ 0
Conversely, assume that for each  = 1   there holds  ≤ 0 Then, since

each  in (6.10) is non-negative, it follows that (1
1+ · · ·+ 

) ≤ 0 Thus,
from (6.10) we have that  ≤ 0 for each  ∈ S. Accordingly, we conclude
that S ⊆ C ¤

7. References

Abul Naga, R. H.,Yalcin, T.: Inequality measurement for ordered response health

data. Journal of Health Economics 27, 1614-1625 (2008)

Allison, R., A., Foster, J. : Measuring health inequalities using qualitative

data. Journal of Health Economics 23, 505-524 (2004).

Ando, T. : Majorization and inequalities in matrix theory. Linear Algebra and

its Applications 199, 17-67 (1994).

Andreoli, F., Zoli, C. : On the measurement of dissimilarity and related orders.

ECINEQ working paper 247 (2013).

Apouey, B. : Measuring health polarization with self-assessed health data.

Health Economics 16, 875-894 (2007).

Atkinson, A.B. : On the measurement of inequality. Journal of Economic

Theory 2, 244-263 (1970).

Atkinson, A.B.: How progressive should income taxation be?" in Parkin M.,

Robert Nobay A. eds.: Essays in Modern Economics. Longman (1973).

28



Baker, G., Gibbs, M., Holmström, B. : The internal economics of the firm: ev-

idence from personnel data. Quarterly Journal of Economics 109, 881-919 (1994).

Barvinok, A. : A Course in Convexity. American Mathematical Society

(2002).

Bourguignon, F. : Decomposable income inequality measures. Econometrica

47, 901-920 (1979).

Brualdi, R.: The doubly stochastic matrices of vector majorization. Linear

Algebra and its Applications 61, 141-154 (1984).

Cahuc, P., Carcillo, S., Zylberberg, A. : Labor Economics. MIT Press (2014).

Chakravarty, S., Zoli, C. : Stochastic dominance relations for integer variables.

Journal of Economic Theory 147, 1331—1341 (2012).

Cowell, F., Flachaire, E. : Inequality with ordinal data. Manuscript (2012).

Dahl, G. : Majorization, polyhedra and statistical testing problems. Linear

Algebra and its Applications 272, 205-225 (1998).

Dahl, G. : Majorization polytopes. Linear Algebra and its Applications 297,

157-175 (1999).

Deaton, A. : An explicit solution to an optimal tax problem. Journal of Public

Economics 20, 333-346 (1983).

Department of Finance and Personnel: Senior civil service pay. http

://www.dfpni.gov.uk /scs_pay_scales_1_august_2014.pdf (2014).

Foster, J., Shneyerov, A. : A general class of additively decomposable inequal-

ity measures. Economic Theory 14, 89-111 (1999).

Gajdos, T., Weymark, J. : Multidimensional generalized gini indices. Eco-

nomic Theory 26, 471-496 (2005).

Gravel, N., Moyes, P. : Ethically robust comparisons of bidimensional distri-

butions with an ordinal attribute. Journal of Economic Theory 147, 1384-1426

(2012).

Gravel N., Magdalou, B., Moyes, P.: Ranking distributions of an ordinal at-

tribute. Aix-Marseille School of Economics working paper 2014-50 (2014).

Hindriks, J., Myles, G.: Intermediate Public Economics, MIT Press (2013).

Kobus, M., Miłós, P.: Inequality decomposition for population subgroups.

Journal of Health Economics 31 15-21 (2012).

Lay, S.: Convex Sets and their Applications. John Wiley (1982).

Marshall, A., Olkin, I., Arnold, B.:Inequalities: Theory of Majorization and

its Applications. Springer (2010).

Mirrlees, J. : An exploration in the theory of optimal taxation. Review of

Economic Studies 38, 175-208 (1971).

29



Moyes, P. : Inequality reducing and inequality preserving transformations of

incomes: symmetric and individualistic transformations. Journal of Economic

Theory 63, 271-298 (1994).

Ok, E. : Fuzzy measurement of income inequality: some possibility results on

the fuzzification of the Lorenz ordering. Economic Theory 7, 513-530 (1996).

del Río, C., Alonso-Villar, O.: New unit-consistent intermediate inequality

indices. Economic Theory 42, 505-521 (2010).

Roberts, K. : The theoretical limits to redistribution. Review of Economic

Studies 51, 177-195 (1984).

Salanié, B. : The Economics of Taxation. MIT Press (2003).

Savaglio, E.: Multidimensional inequality with variable population size. Eco-

nomic Theory 28, 85-94 (2006).

Shorrocks, A. : The class of additively decomposable inequality measures.

Econometrica 48, 613-625 (1980).

Zheng, B. : A new approach to measure socioeconomic inequality in health”,

Journal of Economic Inequality 9, 555-577 (2011).

Ziegler, G. : Lectures on Polytopes. Springer, (1995).

30



 

 

 

Figure 1 

The set C and its four vertices when n = 3 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 1 
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Figure 2 

The majorization set 𝐶𝐶𝑢𝑢𝑢𝑢 of Example 2 and its three vertices when n = 3 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 1 
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