dc.contributor.author | Topic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS initiative | |
dc.date.accessioned | 2020-01-23T10:20:02Z | |
dc.date.available | 2020-01-23T10:20:02Z | |
dc.date.issued | 2019-12-16 | |
dc.identifier.citation | Topic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS initiative 2019 , ' Calibration : the Achilles heel of predictive analytics ' , BMC medicine , vol. 17 , 230 . https://doi.org/10.1186/s12916-019-1466-7 | en |
dc.identifier.issn | 1741-7015 | |
dc.identifier.other | PURE: 155288311 | |
dc.identifier.other | PURE UUID: 4fe5353b-57e8-4b55-b7c2-4fe7e5059c6d | |
dc.identifier.other | PubMed: 31842878 | |
dc.identifier.other | PubMedCentral: PMC6912996 | |
dc.identifier.other | Scopus: 85077149933 | |
dc.identifier.other | ORCID: /0000-0001-8905-2429/work/79059215 | |
dc.identifier.uri | https://hdl.handle.net/2164/13570 | |
dc.description | Acknowledgements This work was developed as part of the international STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies (http://stratos-initiative.org/). Members of the STRATOS Topic Group ‘Evaluating diagnostic tests and prediction models’ are (alphabetically) Patrick Bossuyt, Gary S. Collins, Petra Macaskill, David J. McLernon, Karel G.M. Moons, Ewout W. Steyerberg, Ben Van Calster, Maarten van Smeden, and Andrew Vickers. Funding This work was funded by the Research Foundation – Flanders (FWO; grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). The funders had no role in study design, data collection, data analysis, interpretation of results, or writing of the manuscript. Contributions All authors conceived of the study. BVC drafted the manuscript. All authors reviewed and edited the manuscript and approved the final version. | en |
dc.language.iso | eng | |
dc.relation.ispartof | BMC medicine | en |
dc.rights | © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. | en |
dc.subject | Calibration | en |
dc.subject | Risk prediction models | en |
dc.subject | Predictive analytics | en |
dc.subject | Overfitting | en |
dc.subject | Heterogeneity | en |
dc.subject | Model performance | en |
dc.subject | Q Science | en |
dc.subject | Medicine(all) | en |
dc.subject.lcc | Q | en |
dc.title | Calibration : the Achilles heel of predictive analytics | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Other Applied Health Sciences | en |
dc.contributor.institution | University of Aberdeen.Grampian Data Safe Haven (DaSH) | en |
dc.contributor.institution | University of Aberdeen.Institute of Applied Health Sciences | en |
dc.contributor.institution | University of Aberdeen.Medical Statistics | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Publisher PDF | en |
dc.identifier.doi | https://doi.org/10.1186/s12916-019-1466-7 | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85077149933&partnerID=8YFLogxK | en |
dc.identifier.vol | 17 | en |