Show simple item record

dc.contributor.authorTopic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS initiative
dc.date.accessioned2020-01-23T10:20:02Z
dc.date.available2020-01-23T10:20:02Z
dc.date.issued2019-12-16
dc.identifier.citationTopic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS initiative 2019 , ' Calibration : the Achilles heel of predictive analytics ' , BMC medicine , vol. 17 , 230 . https://doi.org/10.1186/s12916-019-1466-7en
dc.identifier.issn1741-7015
dc.identifier.otherPURE: 155288311
dc.identifier.otherPURE UUID: 4fe5353b-57e8-4b55-b7c2-4fe7e5059c6d
dc.identifier.otherPubMed: 31842878
dc.identifier.otherPubMedCentral: PMC6912996
dc.identifier.otherScopus: 85077149933
dc.identifier.otherORCID: /0000-0001-8905-2429/work/79059215
dc.identifier.urihttps://hdl.handle.net/2164/13570
dc.descriptionAcknowledgements This work was developed as part of the international STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies (http://stratos-initiative.org/). Members of the STRATOS Topic Group ‘Evaluating diagnostic tests and prediction models’ are (alphabetically) Patrick Bossuyt, Gary S. Collins, Petra Macaskill, David J. McLernon, Karel G.M. Moons, Ewout W. Steyerberg, Ben Van Calster, Maarten van Smeden, and Andrew Vickers. Funding This work was funded by the Research Foundation – Flanders (FWO; grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). The funders had no role in study design, data collection, data analysis, interpretation of results, or writing of the manuscript. Contributions All authors conceived of the study. BVC drafted the manuscript. All authors reviewed and edited the manuscript and approved the final version.en
dc.language.isoeng
dc.relation.ispartofBMC medicineen
dc.rights© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.en
dc.subjectCalibrationen
dc.subjectRisk prediction modelsen
dc.subjectPredictive analyticsen
dc.subjectOverfittingen
dc.subjectHeterogeneityen
dc.subjectModel performanceen
dc.subjectQ Scienceen
dc.subjectMedicine(all)en
dc.subject.lccQen
dc.titleCalibration : the Achilles heel of predictive analyticsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of Aberdeen.Other Applied Health Sciencesen
dc.contributor.institutionUniversity of Aberdeen.Grampian Data Safe Haven (DaSH)en
dc.contributor.institutionUniversity of Aberdeen.Institute of Applied Health Sciencesen
dc.contributor.institutionUniversity of Aberdeen.Medical Statisticsen
dc.description.statusPeer revieweden
dc.description.versionPublisher PDFen
dc.identifier.doihttps://doi.org/10.1186/s12916-019-1466-7
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85077149933&partnerID=8YFLogxKen
dc.identifier.vol17en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record