dc.contributor.author | Dotto, Emanuele | |
dc.contributor.author | Moi, Kristian J. | |
dc.contributor.author | Patchkoria, Irakli | |
dc.contributor.author | Reeh, Sune Precht | |
dc.date.accessioned | 2021-10-07T23:07:58Z | |
dc.date.available | 2021-10-07T23:07:58Z | |
dc.date.issued | 2021-01 | |
dc.identifier.citation | Dotto , E , Moi , K J , Patchkoria , I & Reeh , S P 2021 , ' Real topological Hochschild homology ' , Journal of the European Mathematical Society , vol. 23 , no. 1 , pp. 63-152 . https://doi.org/10.4171/JEMS/1007 | en |
dc.identifier.issn | 1435-9855 | |
dc.identifier.other | PURE: 170732090 | |
dc.identifier.other | PURE UUID: 34ad2e84-e2dc-4f84-8af9-f40752000277 | |
dc.identifier.other | Scopus: 85099012341 | |
dc.identifier.other | WOS: 000605587500003 | |
dc.identifier.uri | https://hdl.handle.net/2164/17308 | |
dc.description | Funding Information: Acknowledgments. The authors would like to thank the Hausdorff Research Institute for Mathematics in Bonn for their hospitality during the Junior Trimester Program in Topology in 2016. Much of the work on this paper was carried out during that program. The authors also acknowledge the support of the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92). The second author was supported by the Max Planck institute for Mathematics and thanks the Mittag-Leffler Institute for their hospitality. The third author was supported by the German Research Foundation Schwerpunktprogramm 1786. The fourth author was supported by Independent Research Fund Denmark’s Sapere Aude program (DFF–4002-00224) and by the Max Planck Institute for Mathematics. Publisher Copyright: © European Mathematical Society 2021 Copyright: Copyright 2021 Elsevier B.V., All rights reserved. | en |
dc.format.extent | 90 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of the European Mathematical Society | en |
dc.rights | © 2021 EMS Publishing House. All rights reserved. This article is the author's accepted manuscript of an article published in JEMS. The final published version can be found at DOI: 10.4171/JEMS/1007 | en |
dc.subject | Hochschild homology | en |
dc.subject | involution | en |
dc.subject | ring spectra | en |
dc.subject | Involution | en |
dc.subject | Ring spectra | en |
dc.subject | SPACES | en |
dc.subject | MODEL CATEGORIES | en |
dc.subject | ALGEBRAIC K-THEORY | en |
dc.subject | HOMOTOPY-THEORY | en |
dc.subject | FUNCTORS | en |
dc.subject | WITT VECTORS | en |
dc.subject | PRODUCT | en |
dc.subject | THEOREMS | en |
dc.subject | COMPLETION | en |
dc.subject | SPECTRA | en |
dc.subject | QA Mathematics | en |
dc.subject | Applied Mathematics | en |
dc.subject | Mathematics(all) | en |
dc.subject.lcc | QA | en |
dc.title | Real topological Hochschild homology | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Mathematical Science | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Postprint | en |
dc.identifier.doi | https://doi.org/10.4171/JEMS/1007 | |
dc.date.embargoedUntil | 2021-10-08 | |
dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85099012341&partnerID=8YFLogxK | en |
dc.identifier.vol | 23 | en |
dc.identifier.iss | 1 | en |