dc.contributor.author | Noble, Michael J | |
dc.contributor.author | Burden, Annie | |
dc.contributor.author | Stirling, Susan | |
dc.contributor.author | Clark, Allan B | |
dc.contributor.author | Musgrave, Stanley D. | |
dc.contributor.author | Alsallakh, Mohammad A | |
dc.contributor.author | Price, David | |
dc.contributor.author | Davies, Gwyneth A | |
dc.contributor.author | Pinnock, Hilary | |
dc.contributor.author | Pond, Martin | |
dc.contributor.author | Sheikh, Aziz | |
dc.contributor.author | Sims, Erika J | |
dc.contributor.author | Walker, Samantha | |
dc.contributor.author | Wilson, Andrew M | |
dc.date.accessioned | 2021-11-30T16:07:00Z | |
dc.date.available | 2021-11-30T16:07:00Z | |
dc.date.issued | 2021-12 | |
dc.identifier.citation | Noble , M J , Burden , A , Stirling , S , Clark , A B , Musgrave , S D , Alsallakh , M A , Price , D , Davies , G A , Pinnock , H , Pond , M , Sheikh , A , Sims , E J , Walker , S & Wilson , A M 2021 , ' Predicting asthma-related hospitalizations and deaths using routine electronic healthcare data : a quantitative database analysis study ' , British Journal of General Practice , vol. 71 , no. 713 , pp. e948-e957 . https://doi.org/10.3399/BJGP.2020.1042 | en |
dc.identifier.issn | 0960-1643 | |
dc.identifier.other | PURE: 195294284 | |
dc.identifier.other | PURE UUID: d55150c2-098c-4293-8e04-928b820ef647 | |
dc.identifier.other | PubMed: 34133316 | |
dc.identifier.other | WOS: 000708827400001 | |
dc.identifier.other | Scopus: 85116476803 | |
dc.identifier.uri | https://hdl.handle.net/2164/17585 | |
dc.description | Acknowledgements The authors would like to thank Derek Skinner, of the Observational & Pragmatic Research Institute, for his support in analytical dataset generation and statistical analyses. We would like to acknowledge the support of the Asthma UK Centre for Applied Research for its help with this study. Funding The Dataset and Statistical Analyses for the derivation of the algorithm was funded and delivered by the Observational & Pragmatic Research Institute (OPRI). This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Health Technology Assessment (HTA) programme (Grant reference number 13/34/70). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. | en |
dc.format.extent | 10 | |
dc.language.iso | eng | |
dc.relation.ispartof | British Journal of General Practice | en |
dc.rights | © The Authors http://creativecommons.org/licenses/by/4.0/ This article is Open Access: CC BY 4.0 licence (http://creativecommons.org/licences/by/4.0/) | en |
dc.subject | Asthma | en |
dc.subject | asthma attack | en |
dc.subject | risk | en |
dc.subject | prediction | en |
dc.subject | Algorithm | en |
dc.subject | R Medicine | en |
dc.subject | National Institute for Health Research (NIHR) | en |
dc.subject | 13/34/70 | en |
dc.subject | Other | en |
dc.subject.lcc | R | en |
dc.title | Predicting asthma-related hospitalizations and deaths using routine electronic healthcare data : a quantitative database analysis study | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Institute of Applied Health Sciences | en |
dc.contributor.institution | University of Aberdeen.Other Applied Health Sciences | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Publisher PDF | en |
dc.identifier.doi | https://doi.org/10.3399/BJGP.2020.1042 | |
dc.identifier.vol | 71 | en |
dc.identifier.iss | 713 | en |