dc.contributor.author | Gadomski, Stephen | |
dc.contributor.author | Fielding , Claire | |
dc.contributor.author | García-García, Andrés | |
dc.contributor.author | Korn, Claudia | |
dc.contributor.author | Ashraf, Sadaf | |
dc.contributor.author | Villadiego, Javier | |
dc.contributor.author | del Toro, Raquel | |
dc.contributor.author | Domingues, Olivia | |
dc.contributor.author | Skepper, Jeremy N. | |
dc.contributor.author | Michel, Tatiana | |
dc.contributor.author | Zimmer, Jacques | |
dc.contributor.author | Sendtner, Regine | |
dc.contributor.author | Dillon, Scott | |
dc.contributor.author | Poole, Kenneth | |
dc.contributor.author | Holdsworth, Gill | |
dc.contributor.author | Sendtner, Michael | |
dc.contributor.author | Toledo-Aral, Juan J. | |
dc.contributor.author | De Bari, Cosimo | |
dc.contributor.author | McCaskie, Andrew W. | |
dc.contributor.author | Robey, Pamela G | |
dc.contributor.author | Méndez-Ferrer, Simón | |
dc.date.accessioned | 2022-03-11T09:14:01Z | |
dc.date.available | 2022-03-11T09:14:01Z | |
dc.date.issued | 2022-04-07 | |
dc.identifier.citation | Gadomski , S , Fielding , C , García-García , A , Korn , C , Ashraf , S , Villadiego , J , del Toro , R , Domingues , O , Skepper , J N , Michel , T , Zimmer , J , Sendtner , R , Dillon , S , Poole , K , Holdsworth , G , Sendtner , M , Toledo-Aral , J J , De Bari , C , McCaskie , A W , Robey , P G & Méndez-Ferrer , S 2022 , ' A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise ' , Cell Stem Cell , vol. 29 , no. 4 , pp. 528-544.e9 . https://doi.org/10.1016/j.stem.2022.02.008 | en |
dc.identifier.issn | 1934-5909 | |
dc.identifier.other | PURE: 214224923 | |
dc.identifier.other | PURE UUID: ee4e424f-fdd7-4b99-97e3-ea1b1fd83955 | |
dc.identifier.other | Scopus: 85127354047 | |
dc.identifier.uri | https://hdl.handle.net/2164/18191 | |
dc.description | Acknowledgments We thank the Weizmann Institute of Science (Israel) for data discussion (T. Lapidot) and for providing TACE inhibitor (I. Sagi, A. Hanuna, and O. Kollet); E. Chu (NIH/NIAMS) and V. Kram (NIH/NIDCR) for assistance with μCT analysis and dynamic histomorphometry data, S. Ozanne (University of Cambridge) for treadmill and A. Horton and A. Davies (Cardiff University) for demonstrating SGC culture protocol; M. Airaksinen for Gfra2−/− mice; E. Khatib-Massalha, E. Grockowiak, Z. Fang, and other members of the S.M.-F. group for support and data discussion; A.R. Green and M. Birch (University of Cambridge), A. Pascual and J. López-Barneo (Universidad de Sevilla) for data discussion; P. Chacón-Fernández, N. Suárez-Luna, F.J. Martín, and C.O. Pintado, in memoriam, (Centro de Experimentación Animal; CEA, Universidad de Sevilla), D. Pask, T. Hamilton (University of Cambridge), the Central Biomedical Services, and Cambridge NIHR BRC Cell Phenotyping Hub for technical assistance; Genentech for providing tocilizumab; UCB Pharma for providing Scl-Ab r13c7. S.G. was supported by the NIH-OXCAM Program and the Gates Cambridge Trust. A.G.G. received fellowships from Ramón Areces and La Caixa Foundations. C.K. was supported by Marie Curie Career Integration grant H2020-MSCA-IF-2015-70841. M.S. and R.S. were supported by DFG, Se 697/7-1 and BMBF through the EnergI consortium TP6. J.V. and J.J.T.-A. were supported by Instituto de Salud Carlos III (PI12/02574), Junta de Andalucia (P12-CTS-2739), and, together with S.M.-F., by Red TerCel (ISCIII-Spanish Cell Therapy Network). S.A. and C.D.B. were supported by Versus Arthritis grant 21156. A.W.M. received funding from Versus Arthritis (21156). P.G.R. and S.G. were supported by the DIR, NIDCR, a part of the IRP, NIH, and DHHS (1ZIADE000380). K.E.S.P. acknowledges the support of the Cambridge NIHR Biomedical Research Centre. This work was supported by core support grants from MRC to the Cambridge Stem Cell Institute; National Health Service Blood and Transplant (United Kingdom), European Union’s Horizon 2020 research (ERC-2014-CoG-648765), MRC-AMED grant MR/V005421/1, and a Programme Foundation Award (C61367/A26670) from Cancer Research UK to S.M.-F. This research was funded in part by the Wellcome Trust (203151/Z/16/Z). For the purpose of Open Access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. | en |
dc.format.extent | 17 | |
dc.language.iso | eng | |
dc.relation.ispartof | Cell Stem Cell | en |
dc.subject | cholinergic | en |
dc.subject | sympathetic | en |
dc.subject | osteocyte | en |
dc.subject | autonomic | en |
dc.subject | development | en |
dc.subject | skeletal | en |
dc.subject | bone | en |
dc.subject | exercise | en |
dc.subject | neuroskeletal | en |
dc.subject | anabolic | en |
dc.subject | R Medicine | en |
dc.subject | Other | en |
dc.subject | ERC-2014-CoG-648765 | en |
dc.subject | MR/V005421/1 | en |
dc.subject | Wellcome Trust | en |
dc.subject | 203151/Z/16/Z | en |
dc.subject | Supplementary Information | en |
dc.subject.lcc | R | en |
dc.title | A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Institute of Medical Sciences | en |
dc.contributor.institution | University of Aberdeen.Medical Sciences | en |
dc.contributor.institution | University of Aberdeen.Applied Medicine | en |
dc.contributor.institution | University of Aberdeen.Aberdeen Centre for Arthritis and Musculoskeletal Health (ACAMH) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Publisher PDF | en |
dc.identifier.doi | https://doi.org/10.1016/j.stem.2022.02.008 | |
dc.identifier.vol | 29 | en |
dc.identifier.iss | 4 | en |