Show simple item record

dc.contributor.authorGadomski, Stephen
dc.contributor.authorFielding , Claire
dc.contributor.authorGarcía-García, Andrés
dc.contributor.authorKorn, Claudia
dc.contributor.authorAshraf, Sadaf
dc.contributor.authorVilladiego, Javier
dc.contributor.authordel Toro, Raquel
dc.contributor.authorDomingues, Olivia
dc.contributor.authorSkepper, Jeremy N.
dc.contributor.authorMichel, Tatiana
dc.contributor.authorZimmer, Jacques
dc.contributor.authorSendtner, Regine
dc.contributor.authorDillon, Scott
dc.contributor.authorPoole, Kenneth
dc.contributor.authorHoldsworth, Gill
dc.contributor.authorSendtner, Michael
dc.contributor.authorToledo-Aral, Juan J.
dc.contributor.authorDe Bari, Cosimo
dc.contributor.authorMcCaskie, Andrew W.
dc.contributor.authorRobey, Pamela G
dc.contributor.authorMéndez-Ferrer, Simón
dc.date.accessioned2022-03-11T09:14:01Z
dc.date.available2022-03-11T09:14:01Z
dc.date.issued2022-04-07
dc.identifier.citationGadomski , S , Fielding , C , García-García , A , Korn , C , Ashraf , S , Villadiego , J , del Toro , R , Domingues , O , Skepper , J N , Michel , T , Zimmer , J , Sendtner , R , Dillon , S , Poole , K , Holdsworth , G , Sendtner , M , Toledo-Aral , J J , De Bari , C , McCaskie , A W , Robey , P G & Méndez-Ferrer , S 2022 , ' A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise ' , Cell Stem Cell , vol. 29 , no. 4 , pp. 528-544.e9 . https://doi.org/10.1016/j.stem.2022.02.008en
dc.identifier.issn1934-5909
dc.identifier.otherPURE: 214224923
dc.identifier.otherPURE UUID: ee4e424f-fdd7-4b99-97e3-ea1b1fd83955
dc.identifier.otherScopus: 85127354047
dc.identifier.urihttps://hdl.handle.net/2164/18191
dc.descriptionAcknowledgments We thank the Weizmann Institute of Science (Israel) for data discussion (T. Lapidot) and for providing TACE inhibitor (I. Sagi, A. Hanuna, and O. Kollet); E. Chu (NIH/NIAMS) and V. Kram (NIH/NIDCR) for assistance with μCT analysis and dynamic histomorphometry data, S. Ozanne (University of Cambridge) for treadmill and A. Horton and A. Davies (Cardiff University) for demonstrating SGC culture protocol; M. Airaksinen for Gfra2−/− mice; E. Khatib-Massalha, E. Grockowiak, Z. Fang, and other members of the S.M.-F. group for support and data discussion; A.R. Green and M. Birch (University of Cambridge), A. Pascual and J. López-Barneo (Universidad de Sevilla) for data discussion; P. Chacón-Fernández, N. Suárez-Luna, F.J. Martín, and C.O. Pintado, in memoriam, (Centro de Experimentación Animal; CEA, Universidad de Sevilla), D. Pask, T. Hamilton (University of Cambridge), the Central Biomedical Services, and Cambridge NIHR BRC Cell Phenotyping Hub for technical assistance; Genentech for providing tocilizumab; UCB Pharma for providing Scl-Ab r13c7. S.G. was supported by the NIH-OXCAM Program and the Gates Cambridge Trust. A.G.G. received fellowships from Ramón Areces and La Caixa Foundations. C.K. was supported by Marie Curie Career Integration grant H2020-MSCA-IF-2015-70841. M.S. and R.S. were supported by DFG, Se 697/7-1 and BMBF through the EnergI consortium TP6. J.V. and J.J.T.-A. were supported by Instituto de Salud Carlos III (PI12/02574), Junta de Andalucia (P12-CTS-2739), and, together with S.M.-F., by Red TerCel (ISCIII-Spanish Cell Therapy Network). S.A. and C.D.B. were supported by Versus Arthritis grant 21156. A.W.M. received funding from Versus Arthritis (21156). P.G.R. and S.G. were supported by the DIR, NIDCR, a part of the IRP, NIH, and DHHS (1ZIADE000380). K.E.S.P. acknowledges the support of the Cambridge NIHR Biomedical Research Centre. This work was supported by core support grants from MRC to the Cambridge Stem Cell Institute; National Health Service Blood and Transplant (United Kingdom), European Union’s Horizon 2020 research (ERC-2014-CoG-648765), MRC-AMED grant MR/V005421/1, and a Programme Foundation Award (C61367/A26670) from Cancer Research UK to S.M.-F. This research was funded in part by the Wellcome Trust (203151/Z/16/Z). For the purpose of Open Access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.en
dc.format.extent17
dc.language.isoeng
dc.relation.ispartofCell Stem Cellen
dc.subjectcholinergicen
dc.subjectsympatheticen
dc.subjectosteocyteen
dc.subjectautonomicen
dc.subjectdevelopmenten
dc.subjectskeletalen
dc.subjectboneen
dc.subjectexerciseen
dc.subjectneuroskeletalen
dc.subjectanabolicen
dc.subjectR Medicineen
dc.subjectOtheren
dc.subjectERC-2014-CoG-648765en
dc.subjectMR/V005421/1en
dc.subjectWellcome Trusten
dc.subject203151/Z/16/Zen
dc.subjectSupplementary Informationen
dc.subject.lccRen
dc.titleA cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exerciseen
dc.typeJournal articleen
dc.contributor.institutionUniversity of Aberdeen.Institute of Medical Sciencesen
dc.contributor.institutionUniversity of Aberdeen.Medical Sciencesen
dc.contributor.institutionUniversity of Aberdeen.Applied Medicineen
dc.contributor.institutionUniversity of Aberdeen.Aberdeen Centre for Arthritis and Musculoskeletal Health (ACAMH)en
dc.description.statusPeer revieweden
dc.description.versionPublisher PDFen
dc.identifier.doihttps://doi.org/10.1016/j.stem.2022.02.008
dc.identifier.vol29en
dc.identifier.iss4en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record