dc.contributor.author | Bunke, Ulrich | |
dc.contributor.author | Caputi, Luigi | |
dc.date.accessioned | 2022-07-26T08:43:02Z | |
dc.date.available | 2022-07-26T08:43:02Z | |
dc.date.issued | 2022-07-01 | |
dc.identifier.citation | Bunke , U & Caputi , L 2022 , ' Controlled objects as a symmetric monoidal functor ' , Higher Sutructures , vol. 6 , no. 1 , pp. 182-211 . https://doi.org/10.21136/HS.2022.03 | en |
dc.identifier.issn | 2209-0606 | |
dc.identifier.other | PURE: 215414624 | |
dc.identifier.other | PURE UUID: 5625281a-cbb7-42ac-af98-05b89db98945 | |
dc.identifier.other | ORCID: /0000-0002-6853-7651/work/116418325 | |
dc.identifier.uri | https://hdl.handle.net/2164/18920 | |
dc.description | Acknowledgements We thank Denis-Charles Cisinksi and Thomas Nikolaus for helpful discussion. U.B. was supported by the SFB 1085 (Higher Invariants) and L.C. was supported by the GK 1692 (Curvature, Cycles, and Cohomology). | en |
dc.format.extent | 30 | |
dc.language.iso | eng | |
dc.relation.ispartof | Higher Sutructures | en |
dc.rights | ©Bunke and Caputi, 2022, under a Creative Commons Attribution 4.0 International License. | en |
dc.subject | controlled objects | en |
dc.subject | symmetric monoidal functors | en |
dc.subject | coarse algebraic K-homology theory | en |
dc.subject | QA Mathematics | en |
dc.subject.lcc | QA | en |
dc.title | Controlled objects as a symmetric monoidal functor | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Mathematical Science | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Publisher PDF | en |
dc.identifier.doi | https://doi.org/10.21136/HS.2022.03 | |
dc.identifier.url | https://higher-structures.math.cas.cz/api/files/issues/Vol6Iss1/BunkeCaputi | en |
dc.identifier.vol | 6 | en |
dc.identifier.iss | 1 | en |