Show simple item record

dc.contributor.authorWong, Nathan Chun Kin
dc.contributor.authorMeshkinfamfard, Sepehr
dc.contributor.authorTurbe, Valerian
dc.contributor.authorWhitaker, Matthew
dc.contributor.authorMoshe, Maya
dc.contributor.authorBardanzellu, Alessia
dc.contributor.authorDai, Tianhong
dc.contributor.authorPignatelli, Eduardo
dc.contributor.authorBarclay, Wendy
dc.contributor.authorDarzi, Ara
dc.contributor.authorElliott, Paul
dc.contributor.authorWard, Helen
dc.contributor.authorTanaka, Reiko
dc.contributor.authorCooke, Graham
dc.contributor.authorMcKendry, Rachel
dc.contributor.authorAtchison, Christina
dc.contributor.authorBharath, Anil A.
dc.date.accessioned2023-03-15T17:10:01Z
dc.date.available2023-03-15T17:10:01Z
dc.date.issued2022-12
dc.identifier.citationWong , N C K , Meshkinfamfard , S , Turbe , V , Whitaker , M , Moshe , M , Bardanzellu , A , Dai , T , Pignatelli , E , Barclay , W , Darzi , A , Elliott , P , Ward , H , Tanaka , R , Cooke , G , McKendry , R , Atchison , C & Bharath , A A 2022 , ' Machine Learning to Support Visual Auditing of Home-based Lateral Flow Immunoassay Self-Test Results for SARS-CoV-2 Antibodies ' , Communications Medicine , vol. 2 , 78 . https://doi.org/10.1038/s43856-022-00146-zen
dc.identifier.issn2730-664X
dc.identifier.otherPURE: 221356712
dc.identifier.otherPURE UUID: b800ce5d-2cdd-4006-9fb0-d894afb08486
dc.identifier.otherORCID: /0000-0001-8904-1551/work/122288875
dc.identifier.urihttps://hdl.handle.net/2164/20296
dc.language.isoeng
dc.relation.ispartofCommunications Medicineen
dc.rightsOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subjectQA76 Computer softwareen
dc.subjectSupplementary Dataen
dc.subject.lccQA76en
dc.titleMachine Learning to Support Visual Auditing of Home-based Lateral Flow Immunoassay Self-Test Results for SARS-CoV-2 Antibodiesen
dc.typeJournal articleen
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Machine Learningen
dc.description.statusPeer revieweden
dc.description.versionPublisher PDFen
dc.identifier.doihttps://doi.org/10.1038/s43856-022-00146-z
dc.identifier.urlhttp://dx.doi.org/10.1038/s43856-022-00146-zen
dc.identifier.vol2en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record