dc.contributor.author | Siddharthan, Advaith | |
dc.contributor.author | Lambin, Christopher | |
dc.contributor.author | Robinson, Anne-Marie | |
dc.contributor.author | Sharma, Nirwan | |
dc.contributor.author | Comont, Richard | |
dc.contributor.author | O'Mahony, Elaine | |
dc.contributor.author | Mellish, Chris | |
dc.contributor.author | Van Der Wal, Rene | |
dc.date.accessioned | 2017-05-02T23:01:13Z | |
dc.date.available | 2017-05-02T23:01:13Z | |
dc.date.issued | 2016-07-14 | |
dc.identifier.citation | Siddharthan , A , Lambin , C , Robinson , A-M , Sharma , N , Comont , R , O'Mahony , E , Mellish , C & Van Der Wal , R 2016 , ' Crowdsourcing without a crowd : Reliable online species identification using Bayesian models to minimize crowd size ' , ACM Transactions on Intelligent Systems and Technology , vol. 7 , no. 4 , 45 , pp. 1-20 . https://doi.org/10.1145/2776896 | en |
dc.identifier.issn | 2157-6904 | |
dc.identifier.other | PURE: 50916326 | |
dc.identifier.other | PURE UUID: 5d7ecf58-4e65-4c89-b09f-f40f6224dff3 | |
dc.identifier.other | Scopus: 84969916130 | |
dc.identifier.uri | http://hdl.handle.net/2164/8595 | |
dc.description | Acknowledgment This research was supported by an award made by the RCUK Digital Economy program to the University of Aberdeen’s dot.rural Digital Economy Hub (ref. EP/G066051/1). Christopher Lambin was funded through a NERC research experience placements grant. | en |
dc.format.extent | 20 | |
dc.language.iso | eng | |
dc.relation.ispartof | ACM Transactions on Intelligent Systems and Technology | en |
dc.rights | 2016 Copyright is held by the owner/author(s). Publication rights licensed to ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Intelligent Systems and Technology, VOL 7, ISS 4, (2016) http://doi.acm.org/10.1145/10.1145/2776896 | en |
dc.subject | crowdsourcing | en |
dc.subject | citizen science | en |
dc.subject | consensus model | en |
dc.subject | Bayesian reasoning | en |
dc.subject | bumblebee identification | en |
dc.subject | biological recording | en |
dc.subject | QA75 Electronic computers. Computer science | en |
dc.subject | UK Research and Innovation (UKRI) | en |
dc.subject | EP/G066051/1 | en |
dc.subject | Natural Environment Research Council (NERC) | en |
dc.subject.lcc | QA75 | en |
dc.title | Crowdsourcing without a crowd : Reliable online species identification using Bayesian models to minimize crowd size | en |
dc.type | Journal article | en |
dc.contributor.institution | University of Aberdeen.Computing Science | en |
dc.contributor.institution | University of Aberdeen.Biological Sciences | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Postprint | en |
dc.identifier.doi | https://doi.org/10.1145/2776896 | |
dc.identifier.vol | 7 | en |
dc.identifier.iss | 4 | en |