University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Modelling Provenance of Sensor Data for Food Safety Compliance Checking

dc.contributor.authorMarkovic, Milan
dc.contributor.authorEdwards, Peter
dc.contributor.authorKollingbaum, Martin
dc.contributor.authorRowe, Alan
dc.contributor.editorMattoso, Marta
dc.contributor.editorGlavic, Boris
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Rowett Instituteen
dc.date.accessioned2017-06-04T23:07:01Z
dc.date.available2017-06-04T23:07:01Z
dc.date.embargoedUntil2017-06-04
dc.date.issued2016-06-04
dc.descriptionThe research described here was funded by an award made by the RCUK IT as a Utility Network+ (EP/K003569/1) and the UK Food Standards Agency. We thank the owner and staff of Rye & Soda restaurant, Aberdeen for their support throughout the project.en
dc.format.extent12
dc.format.extent2139106
dc.identifier67392872
dc.identifierc40a9848-45c4-4956-b633-a5f6eec5cc11
dc.identifier84976647347
dc.identifier000389496000011
dc.identifier.citationMarkovic, M, Edwards, P, Kollingbaum, M & Rowe, A 2016, Modelling Provenance of Sensor Data for Food Safety Compliance Checking. in M Mattoso & B Glavic (eds), Provenance and Annotation of Data and Processes : 6th International Provenance and Annotation Workshop, IPAW 2016, McLean, VA, USA, June 7-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9672, Springer , pp. 134-145, 6th International Provenance and Annotation Workshop, Virginia, United States, 7/06/16. https://doi.org/10.1007/978-3-319-40593-3_11en
dc.identifier.citationconferenceen
dc.identifier.doi10.1007/978-3-319-40593-3_11
dc.identifier.isbn9783319405926
dc.identifier.isbn9783319405933
dc.identifier.issn0302-9743
dc.identifier.otherORCID: /0000-0001-8170-8374/work/42487865
dc.identifier.otherORCID: /0000-0002-4527-9186/work/70471382
dc.identifier.urihttp://hdl.handle.net/2164/8748
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofProvenance and Annotation of Data and Processesen
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectUK Research and Innovation (UKRI)en
dc.subjectEP/K003569/1en
dc.subject.lccQA75en
dc.titleModelling Provenance of Sensor Data for Food Safety Compliance Checkingen
dc.typeConference itemen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
modelling_provenance_sensor_2.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
8.29 KB
Format:
Plain Text
Description: