University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Classification of resting-state fMRI for olfactory dysfunction in parkinson's disease using evolutionary algorithms

dc.contributor.authorDehsarvi, Amir
dc.contributor.authorSmith, Stephen L.
dc.contributor.institutionUniversity of Aberdeen.Applied Medicineen
dc.contributor.institutionUniversity of Aberdeen.Aberdeen Biomedical Imaging Centreen
dc.date.accessioned2020-07-03T08:50:00Z
dc.date.available2020-07-03T08:50:00Z
dc.date.issued2018-07-31
dc.format.extent2
dc.format.extent919313
dc.identifier161557871
dc.identifier613a8312-6d6e-4a73-ac96-959c0a0783c3
dc.identifier85051543933
dc.identifier.citationDehsarvi, A & Smith, S L 2018, Classification of resting-state fMRI for olfactory dysfunction in parkinson's disease using evolutionary algorithms. in Proceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO '18. Association for Computing Machinery, New York, pp. 264-265, The Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15/04/18. https://doi.org/10.1145/3205651.3205681en
dc.identifier.citationconferenceen
dc.identifier.doi10.1145/3205651.3205681
dc.identifier.isbn9781450357647
dc.identifier.otherORCID: /0000-0001-7116-9741/work/47208364
dc.identifier.urihttps://hdl.handle.net/2164/14637
dc.language.isoeng
dc.publisherAssociation for Computing Machinery
dc.relation.ispartofProceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO '18en
dc.subjectEvolutionary Algorithmsen
dc.subjectCartesian Genetic Programmingen
dc.subjectClassificationen
dc.subjectParkinson’s Diseaseen
dc.subjectOlfactory Dysfunctionen
dc.subjectResting-State fMRIen
dc.subjectDynamic Causal Modelingen
dc.subjectR Medicineen
dc.subject.lccRen
dc.titleClassification of resting-state fMRI for olfactory dysfunction in parkinson's disease using evolutionary algorithmsen
dc.typeConference itemen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
AD_GECCO2018_Published_Copy.pdf
Size:
897.77 KB
Format:
Adobe Portable Document Format

Collections