Metrics for Learning in Topological Persistence
| dc.contributor.author | Riihimaki, Henri | |
| dc.contributor.author | Licón Saláiz, José | |
| dc.contributor.institution | University of Aberdeen.Mathematical Science | en |
| dc.date.accessioned | 2021-03-10T13:51:01Z | |
| dc.date.available | 2021-03-10T13:51:01Z | |
| dc.date.issued | 2019-09-16 | |
| dc.description | Acknowledgments We gratefully acknowledge Roel Neggers for providing the DALES simulation data. JLS acknowledges support by the DFG-funded transregional research collaborative TR32 on Patterns in Soil–Vegetation–Atmosphere Systems. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 16 | |
| dc.format.extent | 1206551 | |
| dc.identifier | 189321374 | |
| dc.identifier | fd8a0d10-e9d9-47bd-add7-e9ab84bf8267 | |
| dc.identifier.citation | Riihimaki, H & Licón Saláiz, J 2019, 'Metrics for Learning in Topological Persistence', Paper presented at Applications of Topological Data Analysis, Würzburg, Germany, 16/09/19 - 16/09/19. https://doi.org/10.20392/51hn-fj12 | en |
| dc.identifier.citation | workshop | en |
| dc.identifier.doi | 10.20392/51hn-fj12 | |
| dc.identifier.uri | https://hdl.handle.net/2164/16009 | |
| dc.identifier.url | https://sites.google.com/view/atda2019/papers | en |
| dc.identifier.url | https://sites.google.com/view/atda2019/papers | en |
| dc.identifier.url | https://drive.google.com/file/d/1mSjniOKzDMm1a7D7amZPGCW-O3lZXOvn/view | en |
| dc.language.iso | eng | |
| dc.subject | Persistent homology | en |
| dc.subject | Topological learning | en |
| dc.subject | Stable rank | en |
| dc.subject | Atmospheric science | en |
| dc.subject | QA Mathematics | en |
| dc.subject.lcc | QA | en |
| dc.title | Metrics for Learning in Topological Persistence | en |
| dc.type | Conference paper | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Riihimaki_etal_ATDA2019_Metrics_for_learning_VOR.pdf
- Size:
- 1.15 MB
- Format:
- Adobe Portable Document Format
