Improving Malaria diagnosis through interpretable customized CNNs architectures
| dc.contributor.author | Ahamed, Md. Faysal | |
| dc.contributor.author | Nahiduzzaman, Md. | |
| dc.contributor.author | Mahmud, Golam | |
| dc.contributor.author | Shafi, Fariya Bintay | |
| dc.contributor.author | Ayari, Mohamed Arselene | |
| dc.contributor.author | Khandakar, Amith | |
| dc.contributor.author | Abdullah-Al-Wadud, M. | |
| dc.contributor.author | Islam, S. M. Riazul | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Natural & Computing Sciences | en |
| dc.date.accessioned | 2025-04-23T15:41:01Z | |
| dc.date.available | 2025-04-23T15:41:01Z | |
| dc.date.issued | 2025-02-25 | |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 35 | |
| dc.format.extent | 8842912 | |
| dc.identifier | 301863658 | |
| dc.identifier | ebf9f5fe-66fc-4231-bfaa-68b74eb9ea27 | |
| dc.identifier | 85218708869 | |
| dc.identifier.citation | Ahamed, M F, Nahiduzzaman, M, Mahmud, G, Shafi, F B, Ayari, M A, Khandakar, A, Abdullah-Al-Wadud, M & Islam, S M R 2025, 'Improving Malaria diagnosis through interpretable customized CNNs architectures', Scientific Reports, vol. 15, 6484. https://doi.org/10.1038/s41598-025-90851-1 | en |
| dc.identifier.doi | 10.1038/s41598-025-90851-1 | |
| dc.identifier.issn | 2045-2322 | |
| dc.identifier.other | ORCID: /0000-0003-2968-9561/work/183073390 | |
| dc.identifier.uri | https://hdl.handle.net/2164/25358 | |
| dc.identifier.vol | 15 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Scientific Reports | en |
| dc.subject | SDG 3 - Good Health and Well-being | en |
| dc.subject | Parallel convolutional neural network (PCNN) | en |
| dc.subject | Soft Attention | en |
| dc.subject | Blood smear | en |
| dc.subject | Plasmodium parasite | en |
| dc.subject | Malaria | en |
| dc.subject | Diagnosis | en |
| dc.subject | R Medicine (General) | en |
| dc.subject | Supplementary Data | en |
| dc.subject | DAS | en |
| dc.subject | Link | en |
| dc.subject | https://lhncbc.nlm.nih.gov/LHC-research/LHC-projects/image-processing/malaria-datasheet.html | en |
| dc.subject.lcc | R1 | en |
| dc.title | Improving Malaria diagnosis through interpretable customized CNNs architectures | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Ahamed_etal_SR_Improving_Malaria_Diagnosis_VoR.pdf
- Size:
- 8.43 MB
- Format:
- Adobe Portable Document Format
