Identification and validation of a machine learning model of complete response to radiation in rectal cancer reveals immune infiltrate and TGFβ as key predictors
| dc.contributor.author | Domingo, Enric | |
| dc.contributor.author | Rathee, Sanjay | |
| dc.contributor.author | Blake, Andrew | |
| dc.contributor.author | Samuel, Leslie | |
| dc.contributor.author | Murray, Graeme | |
| dc.contributor.author | Sebag-Montefiore, David | |
| dc.contributor.author | Gollins, Simon | |
| dc.contributor.author | West, Nicholas | |
| dc.contributor.author | Begum, Rubina | |
| dc.contributor.author | Richman, Susan | |
| dc.contributor.author | Quirke, Phil | |
| dc.contributor.author | Redmond, Keara | |
| dc.contributor.author | Chatzipli, Aikaterini | |
| dc.contributor.author | Barberis, Alessandro | |
| dc.contributor.author | Hassanieh, Sylvana | |
| dc.contributor.author | Mahmood, Umair | |
| dc.contributor.author | Youdell, Michael | |
| dc.contributor.author | McDermott, Ultan | |
| dc.contributor.author | Koelzer, Viktor | |
| dc.contributor.author | Leedham, Simon | |
| dc.contributor.author | Tomlinson, Ian | |
| dc.contributor.author | Dunne, Philip | |
| dc.contributor.author | Buffa, Francesca M | |
| dc.contributor.author | Maughan, Timothy S | |
| dc.contributor.author | S:CORT consortium | |
| dc.contributor.institution | University of Aberdeen.Administation Applied Medicine | en |
| dc.contributor.institution | University of Aberdeen.Aberdeen Cancer Centre | en |
| dc.contributor.institution | University of Aberdeen.Applied Medicine | en |
| dc.date.accessioned | 2024-07-22T13:15:01Z | |
| dc.date.available | 2024-07-22T13:15:01Z | |
| dc.date.issued | 2024-08-01 | |
| dc.description | Acknowledgements F.M.B., A.B. and S.R. received funding from CRUK grant 23969 and ERC Consolidator Grant 772970 to F.M.B. The ARISTOTLE trial was funded by Cancer Research UK (CRUK/08/032). V.H.K. gratefully acknowledges funding by the Swiss National Science Foundation (P2SKP3_168322/1 and P2SKP3_168322/2) and the Promedica Foundation (F-87701-41-01). N.P.W acknowledges payment to institution from Yorkshire Cancer Research and Cancer Research UK (CRUK). P.D. acknowledges funding by CRUKearly detection project grant (grant no. A29834). I.T and TSM acknowledge funding from CRUK and MRC. This research was funded in whole, or in part, by the UKRI [MR/M016587/1]. Patients and/or the public were involved in the design and conduct of this work through the S:CORT consortium. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 13 | |
| dc.format.extent | 3620185 | |
| dc.identifier | 291854744 | |
| dc.identifier | 11d07152-ce24-4cf1-80fb-d7950444250f | |
| dc.identifier | 39013324 | |
| dc.identifier | 85198587361 | |
| dc.identifier.citation | Domingo, E, Rathee, S, Blake, A, Samuel, L, Murray, G, Sebag-Montefiore, D, Gollins, S, West, N, Begum, R, Richman, S, Quirke, P, Redmond, K, Chatzipli, A, Barberis, A, Hassanieh, S, Mahmood, U, Youdell, M, McDermott, U, Koelzer, V, Leedham, S, Tomlinson, I, Dunne, P, Buffa, F M, Maughan, T S & S:CORT consortium 2024, 'Identification and validation of a machine learning model of complete response to radiation in rectal cancer reveals immune infiltrate and TGFβ as key predictors', EBioMedicine, vol. 106, 105228. https://doi.org/10.1016/j.ebiom.2024.105228 | en |
| dc.identifier.doi | 10.1016/j.ebiom.2024.105228 | |
| dc.identifier.issn | 2352-3964 | |
| dc.identifier.other | ORCID: /0000-0002-8402-8670/work/164096063 | |
| dc.identifier.uri | https://hdl.handle.net/2164/23878 | |
| dc.identifier.vol | 106 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | EBioMedicine | en |
| dc.subject | SDG 3 - Good Health and Well-being | en |
| dc.subject | Rectal neoplasms | en |
| dc.subject | Radiotherapy | en |
| dc.subject | Precision medicine | en |
| dc.subject | Prediction | en |
| dc.subject | TGFβ | en |
| dc.subject | Immune response | en |
| dc.subject | Genes | en |
| dc.subject | R Medicine | en |
| dc.subject | UK Research and Innovation (UKRI) | en |
| dc.subject | MR/M016587/1 | en |
| dc.subject | Cancer Research UK | en |
| dc.subject | 23969 | en |
| dc.subject | CRUK/08/032 | en |
| dc.subject | A29834 | en |
| dc.subject | European Research Council | en |
| dc.subject | 772970 | en |
| dc.subject | Supplementary Data | en |
| dc.subject.lcc | R | en |
| dc.title | Identification and validation of a machine learning model of complete response to radiation in rectal cancer reveals immune infiltrate and TGFβ as key predictors | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Domingo_etal_EBM_Identification_And_Validation_VoR.pdf
- Size:
- 3.45 MB
- Format:
- Adobe Portable Document Format
