University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Controlled objects as a symmetric monoidal functor

dc.contributor.authorBunke, Ulrich
dc.contributor.authorCaputi, Luigi
dc.contributor.institutionUniversity of Aberdeen.Mathematical Scienceen
dc.date.accessioned2022-07-26T08:43:02Z
dc.date.available2022-07-26T08:43:02Z
dc.date.issued2022-07-01
dc.descriptionAcknowledgements We thank Denis-Charles Cisinksi and Thomas Nikolaus for helpful discussion. U.B. was supported by the SFB 1085 (Higher Invariants) and L.C. was supported by the GK 1692 (Curvature, Cycles, and Cohomology).en
dc.description.statusPeer revieweden
dc.format.extent30
dc.format.extent638182
dc.identifier215414624
dc.identifier5625281a-cbb7-42ac-af98-05b89db98945
dc.identifier.citationBunke, U & Caputi, L 2022, 'Controlled objects as a symmetric monoidal functor', Higher Sutructures, vol. 6, no. 1, pp. 182-211. https://doi.org/10.21136/HS.2022.03en
dc.identifier.doi10.21136/HS.2022.03
dc.identifier.iss1en
dc.identifier.issn2209-0606
dc.identifier.otherORCID: /0000-0002-6853-7651/work/116418325
dc.identifier.urihttps://hdl.handle.net/2164/18920
dc.identifier.urlhttps://higher-structures.math.cas.cz/api/files/issues/Vol6Iss1/BunkeCaputien
dc.identifier.vol6en
dc.language.isoeng
dc.relation.ispartofHigher Sutructuresen
dc.subjectcontrolled objectsen
dc.subjectsymmetric monoidal functorsen
dc.subjectcoarse algebraic K-homology theoryen
dc.subjectQA Mathematicsen
dc.subject.lccQAen
dc.titleControlled objects as a symmetric monoidal functoren
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Bunke_etal_HS_Controlled_Objects_As_VoR.pdf
Size:
623.22 KB
Format:
Adobe Portable Document Format

Collections