Inferring the underlying multivariate structure from bivariate networks with highly correlated nodes
| dc.contributor.author | Loske, Philipp | |
| dc.contributor.author | Schelter, Bjoern O. | |
| dc.contributor.institution | University of Aberdeen.Aberdeen Biomedical Imaging Centre | en |
| dc.contributor.institution | University of Aberdeen.Medicine, Medical Sciences & Nutrition | en |
| dc.contributor.institution | University of Aberdeen.Institute for Complex Systems and Mathematical Biology (ICSMB) | en |
| dc.contributor.institution | University of Aberdeen.Physics | en |
| dc.date.accessioned | 2022-10-05T13:36:01Z | |
| dc.date.available | 2022-10-05T13:36:01Z | |
| dc.date.issued | 2022-07 | |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 12 | |
| dc.format.extent | 2455357 | |
| dc.identifier | 218808867 | |
| dc.identifier | 235a5895-406a-40c2-830a-f7c40da0d0b6 | |
| dc.identifier | 85134620398 | |
| dc.identifier | 35864116 | |
| dc.identifier.citation | Loske, P & Schelter, B O 2022, 'Inferring the underlying multivariate structure from bivariate networks with highly correlated nodes', Scientific Reports, vol. 12, no. 1, 12486. https://doi.org/10.1038/s41598-022-16296-y | en |
| dc.identifier.doi | 10.1038/s41598-022-16296-y | |
| dc.identifier.iss | 1 | en |
| dc.identifier.issn | 2045-2322 | |
| dc.identifier.uri | https://hdl.handle.net/2164/19288 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85134620398&partnerID=8YFLogxK | en |
| dc.identifier.vol | 12 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Scientific Reports | en |
| dc.subject | Substantive connection via eligible employment contract | en |
| dc.subject | Applied mathematics | en |
| dc.subject | Complex networks | en |
| dc.subject | statistics | en |
| dc.subject | QC Physics | en |
| dc.subject | General | en |
| dc.subject | Other | en |
| dc.subject | RG14565 | en |
| dc.subject.lcc | QC | en |
| dc.title | Inferring the underlying multivariate structure from bivariate networks with highly correlated nodes | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Loske_et_al_Inferring_underlying_Scientific_reports_vor.pdf
- Size:
- 2.34 MB
- Format:
- Adobe Portable Document Format
