University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Machine Learning Applications for Fisheries : At Scales from Genomics to Ecosystems

dc.contributor.authorKühn, Bernhard
dc.contributor.authorCayetano, Arjay
dc.contributor.authorFincham, Jennifer I.
dc.contributor.authorMoustahfid, Hassan
dc.contributor.authorSokolova, Maria
dc.contributor.authorTrifonova, Neda
dc.contributor.authorWatson, Jordan T.
dc.contributor.authorFernandes-Salvador, jose A.
dc.contributor.authorUusitalo, Laura
dc.contributor.institutionUniversity of Aberdeen.Biological Sciencesen
dc.date.accessioned2025-05-12T10:10:12Z
dc.date.available2025-05-12T10:10:12Z
dc.date.issued2025-04-03
dc.descriptionWe would like to thank all members of ICES WGMLEARN working group for the discussions that helped in shaping this review. Particular thanks to the chairs Ketil Malde and Jean-Olivier Irisson for their invitation to the topic and general support and comments of Sven Kupschus on the initial ideas of this review. Neither the European Union nor the granting authority can be held responsible for them.en
dc.description.statusPeer revieweden
dc.format.extent24
dc.format.extent3174160
dc.identifier298652331
dc.identifier0782b2e0-1567-4a91-b652-9bd95dc61343
dc.identifier85209677805
dc.identifier.citationKühn, B, Cayetano, A, Fincham, J I, Moustahfid, H, Sokolova, M, Trifonova, N, Watson, J T, Fernandes-Salvador, J A & Uusitalo, L 2025, 'Machine Learning Applications for Fisheries : At Scales from Genomics to Ecosystems', Reviews in Fisheries Science and Aquaculture, vol. 33, no. 2, pp. 334-357. https://doi.org/10.1080/23308249.2024.2423189en
dc.identifier.doi10.1080/23308249.2024.2423189
dc.identifier.iss2en
dc.identifier.issn2330-8249
dc.identifier.urihttps://hdl.handle.net/2164/25384
dc.identifier.vol33en
dc.language.isoeng
dc.relation.ispartofReviews in Fisheries Science and Aquacultureen
dc.subjectSDG 14 - Life Below Wateren
dc.subjectMarine scienceen
dc.subjectmonitoringen
dc.subjectmanagementen
dc.subjectQH301 Biologyen
dc.subjectSH Aquaculture. Fisheries. Anglingen
dc.subjectSupplementary Informationen
dc.subject.lccQH301en
dc.subject.lccSHen
dc.titleMachine Learning Applications for Fisheries : At Scales from Genomics to Ecosystemsen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
K_hn_etal_RFSA_Machine_Learning_Applications_VoR.pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format

Collections