Machine Learning Applications for Fisheries : At Scales from Genomics to Ecosystems
| dc.contributor.author | Kühn, Bernhard | |
| dc.contributor.author | Cayetano, Arjay | |
| dc.contributor.author | Fincham, Jennifer I. | |
| dc.contributor.author | Moustahfid, Hassan | |
| dc.contributor.author | Sokolova, Maria | |
| dc.contributor.author | Trifonova, Neda | |
| dc.contributor.author | Watson, Jordan T. | |
| dc.contributor.author | Fernandes-Salvador, jose A. | |
| dc.contributor.author | Uusitalo, Laura | |
| dc.contributor.institution | University of Aberdeen.Biological Sciences | en |
| dc.date.accessioned | 2025-05-12T10:10:12Z | |
| dc.date.available | 2025-05-12T10:10:12Z | |
| dc.date.issued | 2025-04-03 | |
| dc.description | We would like to thank all members of ICES WGMLEARN working group for the discussions that helped in shaping this review. Particular thanks to the chairs Ketil Malde and Jean-Olivier Irisson for their invitation to the topic and general support and comments of Sven Kupschus on the initial ideas of this review. Neither the European Union nor the granting authority can be held responsible for them. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 24 | |
| dc.format.extent | 3174160 | |
| dc.identifier | 298652331 | |
| dc.identifier | 0782b2e0-1567-4a91-b652-9bd95dc61343 | |
| dc.identifier | 85209677805 | |
| dc.identifier.citation | Kühn, B, Cayetano, A, Fincham, J I, Moustahfid, H, Sokolova, M, Trifonova, N, Watson, J T, Fernandes-Salvador, J A & Uusitalo, L 2025, 'Machine Learning Applications for Fisheries : At Scales from Genomics to Ecosystems', Reviews in Fisheries Science and Aquaculture, vol. 33, no. 2, pp. 334-357. https://doi.org/10.1080/23308249.2024.2423189 | en |
| dc.identifier.doi | 10.1080/23308249.2024.2423189 | |
| dc.identifier.iss | 2 | en |
| dc.identifier.issn | 2330-8249 | |
| dc.identifier.uri | https://hdl.handle.net/2164/25384 | |
| dc.identifier.vol | 33 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Reviews in Fisheries Science and Aquaculture | en |
| dc.subject | SDG 14 - Life Below Water | en |
| dc.subject | Marine science | en |
| dc.subject | monitoring | en |
| dc.subject | management | en |
| dc.subject | QH301 Biology | en |
| dc.subject | SH Aquaculture. Fisheries. Angling | en |
| dc.subject | Supplementary Information | en |
| dc.subject.lcc | QH301 | en |
| dc.subject.lcc | SH | en |
| dc.title | Machine Learning Applications for Fisheries : At Scales from Genomics to Ecosystems | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- K_hn_etal_RFSA_Machine_Learning_Applications_VoR.pdf
- Size:
- 3.03 MB
- Format:
- Adobe Portable Document Format
