An experimental methodology for automated detection of surface turbulence features in tidal stream environments
| dc.contributor.author | Slingsby, James | |
| dc.contributor.author | Scott, Beth | |
| dc.contributor.author | Kregting, Louise | |
| dc.contributor.author | McIlvenny, Jason | |
| dc.contributor.author | Wilson, Jared | |
| dc.contributor.author | Helleux, Fanny | |
| dc.contributor.author | Williamson, Benjamin J. | |
| dc.contributor.institution | University of Aberdeen.Centre for Energy Transition | en |
| dc.contributor.institution | University of Aberdeen.Marine Alliance for Science and Technology for Scotland (MASTS) | en |
| dc.contributor.institution | University of Aberdeen.Biological Sciences | en |
| dc.date.accessioned | 2025-03-21T21:27:01Z | |
| dc.date.available | 2025-03-21T21:27:01Z | |
| dc.date.issued | 2024-10-01 | |
| dc.description | Acknowledgments We gratefully acknowledge the support of colleagues at Marine Scotland Science, the crew/scientists of the MRV Scotia 2016/2018 cruises (particularly Chief Scientists Eric Armstrong and Adrian Tait), and ERI interns: Gael Gelis and Martin Forestier. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 14 | |
| dc.format.extent | 1861353 | |
| dc.identifier | 293396845 | |
| dc.identifier | a0c30366-3ba4-4a77-803c-a5e653dfaa91 | |
| dc.identifier | 39409210 | |
| dc.identifier | 85206434068 | |
| dc.identifier.citation | Slingsby, J, Scott, B, Kregting, L, McIlvenny, J, Wilson, J, Helleux, F & Williamson, B J 2024, 'An experimental methodology for automated detection of surface turbulence features in tidal stream environments', Sensors, vol. 24, no. 19, 6170. https://doi.org/10.3390/s24196170 | en |
| dc.identifier.doi | 10.3390/s24196170 | |
| dc.identifier.iss | 19 | en |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.other | ORCID: /0000-0001-5412-3952/work/180764433 | |
| dc.identifier.uri | https://hdl.handle.net/2164/25185 | |
| dc.identifier.vol | 24 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Sensors | en |
| dc.subject | SDG 7 - Affordable and Clean Energy | en |
| dc.subject | SDG 14 - Life Below Water | en |
| dc.subject | environmental monitoring | en |
| dc.subject | remote sensing | en |
| dc.subject | marine renewables | en |
| dc.subject | machine learning | en |
| dc.subject | deep learning | en |
| dc.subject | QH301 Biology | en |
| dc.subject | GC Oceanography | en |
| dc.subject | Supplementary Data | en |
| dc.subject | DAS | en |
| dc.subject.lcc | QH301 | en |
| dc.subject.lcc | GC | en |
| dc.title | An experimental methodology for automated detection of surface turbulence features in tidal stream environments | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Slingsby_etal_S_An_Experimental_Methodology_VoR.pdf
- Size:
- 1.78 MB
- Format:
- Adobe Portable Document Format
