Deep learning based prediction on greenhouse crop yield combined TCN and RNN
| dc.contributor.author | Gong, Liyun | |
| dc.contributor.author | Yu, Miao | |
| dc.contributor.author | Jiang, Shouyong | |
| dc.contributor.author | Cutsuridis, Vassilis | |
| dc.contributor.author | Pearson, Simon | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.date.accessioned | 2021-11-18T21:51:00Z | |
| dc.date.available | 2021-11-18T21:51:00Z | |
| dc.date.issued | 2021-07-01 | |
| dc.description | Funding: This research was supported as part of SMARTGREEN, an Interreg project supported by the North Sea Programme of the European Regional Development Fund of the European Union. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 16 | |
| dc.format.extent | 1184644 | |
| dc.identifier | 208737979 | |
| dc.identifier | 1c13ec97-8ab8-4f60-ae94-322647698638 | |
| dc.identifier | 85108866960 | |
| dc.identifier | 34283083 | |
| dc.identifier.citation | Gong, L, Yu, M, Jiang, S, Cutsuridis, V & Pearson, S 2021, 'Deep learning based prediction on greenhouse crop yield combined TCN and RNN', Sensors, vol. 21, no. 13, 4537. https://doi.org/10.3390/s21134537 | en |
| dc.identifier.doi | 10.3390/s21134537 | |
| dc.identifier.iss | 13 | en |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.uri | https://hdl.handle.net/2164/17518 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85108866960&partnerID=8YFLogxK | en |
| dc.identifier.vol | 21 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Sensors | en |
| dc.subject | Crop yield prediction | en |
| dc.subject | Deep learning | en |
| dc.subject | Greenhouse | en |
| dc.subject | Recurrent neural network (RNN) | en |
| dc.subject | Temporal convolutional network (TCN) | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject | Analytical Chemistry | en |
| dc.subject | Information Systems | en |
| dc.subject | Atomic and Molecular Physics, and Optics | en |
| dc.subject | Biochemistry | en |
| dc.subject | Instrumentation | en |
| dc.subject | Electrical and Electronic Engineering | en |
| dc.subject | European Commission | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Deep learning based prediction on greenhouse crop yield combined TCN and RNN | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Gong_etal_Sensors_Deep_learning_based_VOR.pdf
- Size:
- 1.13 MB
- Format:
- Adobe Portable Document Format
