Improving Synthetic to Realistic Semantic Segmentation with Parallel Generative Ensembles for Autonomous Urban Driving
| dc.contributor.author | Yi, Dewei | |
| dc.contributor.author | Fang, Hui | |
| dc.contributor.author | Hua, Yining | |
| dc.contributor.author | Su, Jinya | |
| dc.contributor.author | Quddus, Mohammed A. | |
| dc.contributor.author | Han, Jungong | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.date.accessioned | 2023-10-04T23:21:40Z | |
| dc.date.available | 2023-10-04T23:21:40Z | |
| dc.date.embargoedUntil | 2023-10-05 | |
| dc.date.issued | 2022-12-01 | |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 11 | |
| dc.format.extent | 12076428 | |
| dc.identifier | 201449332 | |
| dc.identifier | eed4f9f0-3955-47aa-90c2-f1baadeacb7f | |
| dc.identifier | 85119626116 | |
| dc.identifier | 85119626116 | |
| dc.identifier.citation | Yi, D, Fang, H, Hua, Y, Su, J, Quddus, M A & Han, J 2022, 'Improving Synthetic to Realistic Semantic Segmentation with Parallel Generative Ensembles for Autonomous Urban Driving', IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 4, pp. 1496-1506. https://doi.org/10.1109/TCDS.2021.3117925 | en |
| dc.identifier.doi | 10.1109/TCDS.2021.3117925 | |
| dc.identifier.issn | 2379-8920 | |
| dc.identifier.other | ORCID: /0000-0003-1702-9136/work/104792724 | |
| dc.identifier.other | ORCID: /0000-0002-3121-7208/work/112496150 | |
| dc.identifier.other | ORCID: /0000-0002-3377-6943/work/101128747 | |
| dc.identifier.uri | https://hdl.handle.net/2164/21837 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85119626116&partnerID=8YFLogxK | en |
| dc.identifier.url | https://pure.roehampton.ac.uk/portal/en/publications/1fa0afdf-d77b-44e2-b247-7ac006aa210e | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | IEEE Transactions on Cognitive and Developmental Systems | en |
| dc.subject | Substantive connection via an eligible employment contract | en |
| dc.subject | Adaptation models | en |
| dc.subject | Autonomous vehicles | en |
| dc.subject | Deep learning | en |
| dc.subject | Domain adaptation | en |
| dc.subject | Feature extraction | en |
| dc.subject | Generative adversarial network | en |
| dc.subject | Generative adversarial networks | en |
| dc.subject | Image processing | en |
| dc.subject | Image segmentation | en |
| dc.subject | Integrated circuits | en |
| dc.subject | Semantic segmentation | en |
| dc.subject | Semantics | en |
| dc.subject | Training data | en |
| dc.subject | QA76 Computer software | en |
| dc.subject | Software | en |
| dc.subject | Artificial Intelligence | en |
| dc.subject.lcc | QA76 | en |
| dc.title | Improving Synthetic to Realistic Semantic Segmentation with Parallel Generative Ensembles for Autonomous Urban Driving | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Yi_etal_IEEE_Improving_Synthetic_To_AAM.pdf
- Size:
- 11.52 MB
- Format:
- Adobe Portable Document Format
