University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Improving Synthetic to Realistic Semantic Segmentation with Parallel Generative Ensembles for Autonomous Urban Driving

dc.contributor.authorYi, Dewei
dc.contributor.authorFang, Hui
dc.contributor.authorHua, Yining
dc.contributor.authorSu, Jinya
dc.contributor.authorQuddus, Mohammed A.
dc.contributor.authorHan, Jungong
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Machine Learningen
dc.date.accessioned2023-10-04T23:21:40Z
dc.date.available2023-10-04T23:21:40Z
dc.date.embargoedUntil2023-10-05
dc.date.issued2022-12-01
dc.description.statusPeer revieweden
dc.format.extent11
dc.format.extent12076428
dc.identifier201449332
dc.identifiereed4f9f0-3955-47aa-90c2-f1baadeacb7f
dc.identifier85119626116
dc.identifier85119626116
dc.identifier.citationYi, D, Fang, H, Hua, Y, Su, J, Quddus, M A & Han, J 2022, 'Improving Synthetic to Realistic Semantic Segmentation with Parallel Generative Ensembles for Autonomous Urban Driving', IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 4, pp. 1496-1506. https://doi.org/10.1109/TCDS.2021.3117925en
dc.identifier.doi10.1109/TCDS.2021.3117925
dc.identifier.issn2379-8920
dc.identifier.otherORCID: /0000-0003-1702-9136/work/104792724
dc.identifier.otherORCID: /0000-0002-3121-7208/work/112496150
dc.identifier.otherORCID: /0000-0002-3377-6943/work/101128747
dc.identifier.urihttps://hdl.handle.net/2164/21837
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85119626116&partnerID=8YFLogxKen
dc.identifier.urlhttps://pure.roehampton.ac.uk/portal/en/publications/1fa0afdf-d77b-44e2-b247-7ac006aa210een
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Cognitive and Developmental Systemsen
dc.subjectSubstantive connection via an eligible employment contracten
dc.subjectAdaptation modelsen
dc.subjectAutonomous vehiclesen
dc.subjectDeep learningen
dc.subjectDomain adaptationen
dc.subjectFeature extractionen
dc.subjectGenerative adversarial networken
dc.subjectGenerative adversarial networksen
dc.subjectImage processingen
dc.subjectImage segmentationen
dc.subjectIntegrated circuitsen
dc.subjectSemantic segmentationen
dc.subjectSemanticsen
dc.subjectTraining dataen
dc.subjectQA76 Computer softwareen
dc.subjectSoftwareen
dc.subjectArtificial Intelligenceen
dc.subject.lccQA76en
dc.titleImproving Synthetic to Realistic Semantic Segmentation with Parallel Generative Ensembles for Autonomous Urban Drivingen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Yi_etal_IEEE_Improving_Synthetic_To_AAM.pdf
Size:
11.52 MB
Format:
Adobe Portable Document Format

Collections