SAGRNet: A novel object-based graph convolutional neural network for diverse vegetation cover classification in remotely-sensed imagery
| dc.contributor.author | Gui, Baoling | |
| dc.contributor.author | Sam, Lydia | |
| dc.contributor.author | Bhardwaj, Anshuman | |
| dc.contributor.author | Gómez, Diego Soto | |
| dc.contributor.author | Peñaloza, Félix González | |
| dc.contributor.author | Buchroithner, Manfred F. | |
| dc.contributor.author | Green, David R. | |
| dc.contributor.institution | University of Aberdeen.Geosciences | en |
| dc.contributor.institution | University of Aberdeen.Cryosphere and Climate Change Research Group | en |
| dc.contributor.institution | University of Aberdeen.Planetary Sciences | en |
| dc.contributor.institution | University of Aberdeen.Geography & Environment | en |
| dc.date.accessioned | 2025-07-24T14:39:00Z | |
| dc.date.available | 2025-07-24T14:39:00Z | |
| dc.date.issued | 2025-09 | |
| dc.description | Open Access via the Elsevier agreement We would like to thank the UK Centre for Ecology and Hydrology (UKCEH) for providing the high-resolution land cover maps of the United Kingdom, which served as an essential reference in our regional experiments. We also express our appreciation to ESRI for releasing the Global Land Cover dataset through the Living Atlas platform, which enabled the global-scale validation of our model. These openly accessible and high-quality datasets significantly supported the development and evaluation of our work. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 26 | |
| dc.format.extent | 38576019 | |
| dc.identifier | 304837500 | |
| dc.identifier | 55c85bcf-0402-4493-9f3a-48ef5e94e1f3 | |
| dc.identifier | 105007819714 | |
| dc.identifier.citation | Gui, B, Sam, L, Bhardwaj, A, Gómez, D S, Peñaloza, F G, Buchroithner, M F & Green, D R 2025, 'SAGRNet: A novel object-based graph convolutional neural network for diverse vegetation cover classification in remotely-sensed imagery', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 227, pp. 99-124. https://doi.org/10.1016/j.isprsjprs.2025.06.004 | en |
| dc.identifier.doi | 10.1016/j.isprsjprs.2025.06.004 | |
| dc.identifier.issn | 0924-2716 | |
| dc.identifier.other | RIS: urn:8265C02772301133809E4CD08F86C02F | |
| dc.identifier.other | ORCID: /0000-0002-2502-6384/work/186084923 | |
| dc.identifier.other | ORCID: /0000-0002-0518-9979/work/186084944 | |
| dc.identifier.uri | https://hdl.handle.net/2164/25755 | |
| dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0924271625002308 | en |
| dc.identifier.vol | 227 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | ISPRS Journal of Photogrammetry and Remote Sensing | en |
| dc.subject | SDG 13 - Climate Action | en |
| dc.subject | Object-based classification | en |
| dc.subject | Graph convolutional | en |
| dc.subject | Vegetation mapping | en |
| dc.subject | Deep learning | en |
| dc.subject | Remote sensing | en |
| dc.subject | QE Geology | en |
| dc.subject.lcc | QE | en |
| dc.title | SAGRNet: A novel object-based graph convolutional neural network for diverse vegetation cover classification in remotely-sensed imagery | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Gui_etal_ISPRS_SAGRNet_A_novel_VOR.pdf
- Size:
- 36.79 MB
- Format:
- Adobe Portable Document Format
