Deep CNN based droplet deposition segmentation for spray distribution assessment
| dc.contributor.author | Chen, Tao | |
| dc.contributor.author | Meng, Yanhua | |
| dc.contributor.author | Su, Jinya | |
| dc.contributor.author | Liu, Cunjia | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.date.accessioned | 2023-06-19T23:18:47Z | |
| dc.date.available | 2023-06-19T23:18:47Z | |
| dc.date.embargoedUntil | 2023-06-20 | |
| dc.date.issued | 2022 | |
| dc.format.extent | 6 | |
| dc.format.extent | 4918981 | |
| dc.identifier | 216946019 | |
| dc.identifier | 84bd460a-5464-4d04-b19e-1056cb8c9d34 | |
| dc.identifier | 85141136094 | |
| dc.identifier.citation | Chen, T, Meng, Y, Su, J & Liu, C 2022, Deep CNN based droplet deposition segmentation for spray distribution assessment. in 27th International Conference on Automation and Computing (ICAC2022). IEEE Press, pp. 1-6, 27th International Conference on Automation and Computing , Bristol, 1/09/22. https://doi.org/10.1109/ICAC55051.2022.9911061 | en |
| dc.identifier.citation | conference | en |
| dc.identifier.doi | 10.1109/ICAC55051.2022.9911061 | |
| dc.identifier.uri | https://hdl.handle.net/2164/20930 | |
| dc.language.iso | eng | |
| dc.publisher | IEEE Press | |
| dc.relation.ispartof | 27th International Conference on Automation and Computing (ICAC2022) | en |
| dc.subject | SDG 12 - Responsible Consumption and Production | en |
| dc.subject | Convolutional neural network (CNN) | en |
| dc.subject | Droplet segmentation | en |
| dc.subject | Pesticide spray analysis | en |
| dc.subject | Precision agriculture | en |
| dc.subject | Semantic segmentation | en |
| dc.subject | Water sensitive paper | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Deep CNN based droplet deposition segmentation for spray distribution assessment | en |
| dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Chen_etal_ICAAC2022_Deep_CNN_Based_AAM.pdf
- Size:
- 4.69 MB
- Format:
- Adobe Portable Document Format
