Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning
| dc.contributor.author | Wu, Yan-Ting | |
| dc.contributor.author | Zhang, Chen-Jie | |
| dc.contributor.author | Mol, Ben | |
| dc.contributor.author | Kawai, Andrew | |
| dc.contributor.author | Li, Cheng | |
| dc.contributor.author | Chen, Lei | |
| dc.contributor.author | Wang, Yu | |
| dc.contributor.author | Sheng, Jian-Zhong | |
| dc.contributor.author | Fan, Jian-Xia | |
| dc.contributor.author | Shi, Yi | |
| dc.contributor.author | Huang, He-Feng | |
| dc.contributor.institution | University of Aberdeen.Other Applied Health Sciences | en |
| dc.contributor.institution | University of Aberdeen.Aberdeen Centre for Women’s Health Research | en |
| dc.date.accessioned | 2021-06-17T08:57:01Z | |
| dc.date.available | 2021-06-17T08:57:01Z | |
| dc.date.issued | 2021-03-31 | |
| dc.description | Acknowledgments We thank all those who helped to collect the data and the graduate students who took part in the statistical analysis. Financial Support: This work was supported by the National Key Research and Development Program of China (grant Nos.2018YFC1002804 and 2016YFC1000203), the National Natural Science Foundation of China (grant Nos. 81671412 and 81661128010), Program of Shanghai Academic Research Leader (grant No. 20XD1424100), the Outstanding Youth Medical Talents of Shanghai Rising Stars of Medical Talent Youth Development Program, Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (grant No. 2019-12M-5-064), the Foundation of Shanghai Municipal Commission of Health and Family Planning (grant No. 20144Y0110), the Natural Science Foundation of Shanghai (grant Nos. 20511101900 and 20ZR1427200), the Shanghai Shenkang Hospital Development Center, the Clinical Technology Innovation Project (grant Nos. SHDC12019107), and the Clinical Skills Improvement Foundation of Shanghai Jiaotong University School of Medicine (grant No. JQ201717). | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 15 | |
| dc.format.extent | 15612376 | |
| dc.identifier | 195427556 | |
| dc.identifier | b9f8da79-545a-4170-bc29-6dd45d93aa5f | |
| dc.identifier | 33351102 | |
| dc.identifier | 85102909533 | |
| dc.identifier | 000637325400037 | |
| dc.identifier.citation | Wu, Y-T, Zhang, C-J, Mol, B, Kawai, A, Li, C, Chen, L, Wang, Y, Sheng, J-Z, Fan, J-X, Shi, Y & Huang, H-F 2021, 'Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning', Journal of Clinical Endocrinology and Metabolism, vol. 106, no. 3, pp. e1191-e1205. https://doi.org/10.1210/clinem/dgaa899 | en |
| dc.identifier.doi | 10.1210/clinem/dgaa899 | |
| dc.identifier.iss | 3 | en |
| dc.identifier.issn | 0021-972X | |
| dc.identifier.other | PubMedCentral: PMC7947802 | |
| dc.identifier.uri | https://hdl.handle.net/2164/16682 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85102909533&partnerID=8YFLogxK | en |
| dc.identifier.vol | 106 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Journal of Clinical Endocrinology and Metabolism | en |
| dc.subject | SDG 3 - Good Health and Well-being | en |
| dc.subject | GDM | en |
| dc.subject | early prediction | en |
| dc.subject | machine learning models | en |
| dc.subject | early pregnancy | en |
| dc.subject | BMI | en |
| dc.subject | thyroxine | en |
| dc.subject | HEMOGLOBIN | en |
| dc.subject | CLASSIFICATION | en |
| dc.subject | RISK | en |
| dc.subject | PREGNANCY | en |
| dc.subject | 1ST | en |
| dc.subject | DISCRIMINATION | en |
| dc.subject | GLUCOSE | en |
| dc.subject | INSULIN-RESISTANCE | en |
| dc.subject | INTRAUTERINE EXPOSURE | en |
| dc.subject | ASSOCIATION | en |
| dc.subject | RG Gynecology and obstetrics | en |
| dc.subject | R Medicine | en |
| dc.subject | Biochemistry, medical | en |
| dc.subject | Endocrinology | en |
| dc.subject | Biochemistry | en |
| dc.subject | Clinical Biochemistry | en |
| dc.subject | Endocrinology, Diabetes and Metabolism | en |
| dc.subject.lcc | RG | en |
| dc.subject.lcc | R | en |
| dc.title | Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Wu_etal_TJCEM_Early_Prediction_Of_VoR.pdf
- Size:
- 14.89 MB
- Format:
- Adobe Portable Document Format
