University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Predicting Brain Age at Slice Level : Convolutional Neural Networks and Consequences for Interpretability

dc.contributor.authorBallester, Pedro L.
dc.contributor.authorda Silva, Laura Tomaz
dc.contributor.authorMarcon, Matheus
dc.contributor.authorEsper, Nathalia Bianchini
dc.contributor.authorFrey, Benicio N.
dc.contributor.authorBuchweitz, Augusto
dc.contributor.authorMeneguzzi, Felipe
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Agents at Aberdeenen
dc.date.accessioned2023-03-20T09:08:01Z
dc.date.available2023-03-20T09:08:01Z
dc.date.issued2021-02-25
dc.descriptionFunding Information: NE was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior— Brasil (CAPES)—Finance Code 001. MM was financed in part by the Conselho Nacional de Pesquisa—Brasil (CNPq). Funding Information: Conflict of Interest: BF had a research grant from Pfizer outside of this study.en
dc.description.statusPeer revieweden
dc.format.extent12
dc.format.extent2195075
dc.identifier220541354
dc.identifiera12ea962-ede0-4889-af84-da889fd0ab1f
dc.identifier85102461282
dc.identifier.citationBallester, P L, da Silva, L T, Marcon, M, Esper, N B, Frey, B N, Buchweitz, A & Meneguzzi, F 2021, 'Predicting Brain Age at Slice Level : Convolutional Neural Networks and Consequences for Interpretability', Frontiers in psychiatry, vol. 12, 598518. https://doi.org/10.3389/fpsyt.2021.598518en
dc.identifier.doi10.3389/fpsyt.2021.598518
dc.identifier.issn1664-0640
dc.identifier.otherORCID: /0000-0003-3549-6168/work/131351724
dc.identifier.urihttps://hdl.handle.net/2164/20309
dc.identifier.urlhttps://www.scopus.com/pages/publications/85102461282en
dc.language.isoeng
dc.relation.ispartofFrontiers in psychiatryen
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subjectbrain ageen
dc.subjectconvolutional neural networksen
dc.subjectdeep learningen
dc.subjectmodel interpretabilityen
dc.subjectneuroimagingen
dc.subjectR Medicineen
dc.subjectPsychiatry and Mental healthen
dc.subjectSupplementary Dataen
dc.subject.lccRen
dc.titlePredicting Brain Age at Slice Level : Convolutional Neural Networks and Consequences for Interpretabilityen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Ballester_etal_fpsyt_Predicting_Brain_Age_VOR.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format

Collections