Stable gap-filling for longer eddy covariance data gaps : A globally validated machine-learning approach for carbon dioxide, water, and energy fluxes
| dc.contributor.author | Zhu, Songyan | |
| dc.contributor.author | Clement, Robert | |
| dc.contributor.author | McCalmont, Jon | |
| dc.contributor.author | Davies, Christian A. | |
| dc.contributor.author | Hill, Timothy | |
| dc.contributor.institution | University of Aberdeen.Biological Sciences | en | 
| dc.date.accessioned | 2022-12-27T00:09:42Z | |
| dc.date.available | 2022-12-27T00:09:42Z | |
| dc.date.embargoedUntil | 2022-12-27 | |
| dc.date.issued | 2022-03-01 | |
| dc.description | Acknowledgments The authors thank the FLUXNET and the research groups for providing the CC-BY-4.0 (Tier one) open-access eddy covariance data (https://fluxnet.org/login/?redirect_to=/data/download-data/). They also thank the ReddyProc (https://cran.r-project.org/web/packages/REddyProc/index.html) team and scikit-learn (https://scikit-learn.org/stable/install.html) team for the packages that help the implementation and validation for gap-filling approaches. Songyan Zhu would like to acknowledge a Shell funded PhD studentship and Timonthy Hill acknowledge funding from a joint UK NERC-FAPESP grant no. NE/S000011/1 & FAPESP-19/07773-1. | en | 
| dc.description.status | Peer reviewed | en | 
| dc.format.extent | 10 | |
| dc.format.extent | 1511489 | |
| dc.identifier | 212223795 | |
| dc.identifier | 29684c0c-9836-406b-840c-4ec6ff15a922 | |
| dc.identifier | 85121984662 | |
| dc.identifier.citation | Zhu, S, Clement, R, McCalmont, J, Davies, C A & Hill, T 2022, 'Stable gap-filling for longer eddy covariance data gaps : A globally validated machine-learning approach for carbon dioxide, water, and energy fluxes', Agricultural and Forest Meteorology, vol. 314, 108777. https://doi.org/10.1016/j.agrformet.2021.108777 | en | 
| dc.identifier.doi | 10.1016/j.agrformet.2021.108777 | |
| dc.identifier.issn | 0168-1923 | |
| dc.identifier.other | RIS: urn:522F3033020A19B1F03AA9B9E8CC5B31 | |
| dc.identifier.other | ORCID: /0000-0002-5978-9574/work/107063447 | |
| dc.identifier.uri | https://hdl.handle.net/2164/19784 | |
| dc.identifier.vol | 314 | en | 
| dc.language.iso | eng | |
| dc.relation.ispartof | Agricultural and Forest Meteorology | en | 
| dc.subject | SDG 13 - Climate Action | en | 
| dc.subject | SDG 15 - Life on Land | en | 
| dc.subject | Global land ecosystems | en | 
| dc.subject | Carbon exchange | en | 
| dc.subject | Eddy covariance | en | 
| dc.subject | Long gaps | en | 
| dc.subject | Robust gap-filling | en | 
| dc.subject | QH301 Biology | en | 
| dc.subject | Natural Environment Research Council (NERC) | en | 
| dc.subject | NE/S000011/1 | en | 
| dc.subject | 19/07773-1. | en | 
| dc.subject | Supplementary Information | en | 
| dc.subject.lcc | QH301 | en | 
| dc.title | Stable gap-filling for longer eddy covariance data gaps : A globally validated machine-learning approach for carbon dioxide, water, and energy fluxes | en | 
| dc.type | Journal article | en | 
Files
Original bundle
1 - 1 of 1
- Name:
 - Zhu_etal_AFM_Stable_Gap_Filling_AAM.pdf
 - Size:
 - 1.44 MB
 - Format:
 - Adobe Portable Document Format
 
