Deep learning–based nondestructive evaluation of reinforcement bars using ground-penetrating radar and electromagnetic induction data
| dc.contributor.author | Li, Xiaofeng | |
| dc.contributor.author | Liu, Hai | |
| dc.contributor.author | Zhou, Feng | |
| dc.contributor.author | Chen, Zhongchang | |
| dc.contributor.author | Giannakis, Iraklis | |
| dc.contributor.author | Slob, Evert | |
| dc.contributor.institution | University of Aberdeen.Geology and Geophysics | en |
| dc.date.accessioned | 2022-11-26T00:10:47Z | |
| dc.date.available | 2022-11-26T00:10:47Z | |
| dc.date.embargoedUntil | 2022-11-26 | |
| dc.date.issued | 2022-11-15 | |
| dc.description | Funding Information: The research was funded by the National Natural Science Foundation of China (41974165, 42111530126) and Hubei Key Laboratory of Intelligent Geo‐Information Processing (KLIGIP‐2018A2). The authors thank Zhiwei Duan and Xuefeng Yin for their contributions in the initial stage of the work, and the editor and anonymous reviewers for their constructive comments and suggestions to improve the quality of the paper. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 20 | |
| dc.format.extent | 7697336 | |
| dc.identifier | 209762194 | |
| dc.identifier | c63bae2c-eb19-42d9-ba07-dcdd93dc4126 | |
| dc.identifier | 85119989361 | |
| dc.identifier.citation | Li, X, Liu, H, Zhou, F, Chen, Z, Giannakis, I & Slob, E 2022, 'Deep learning–based nondestructive evaluation of reinforcement bars using ground-penetrating radar and electromagnetic induction data', Computer-Aided Civil and Infrastructure Engineering, vol. 37, no. 14, pp. 1834-1853. https://doi.org/10.1111/mice.12798 | en |
| dc.identifier.doi | 10.1111/mice.12798 | |
| dc.identifier.iss | 14 | en |
| dc.identifier.issn | 1093-9687 | |
| dc.identifier.other | ORCID: /0000-0002-7672-8992/work/147566860 | |
| dc.identifier.uri | https://hdl.handle.net/2164/19620 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85119989361&partnerID=8YFLogxK | en |
| dc.identifier.vol | 37 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Computer-Aided Civil and Infrastructure Engineering | en |
| dc.subject | TA Engineering (General). Civil engineering (General) | en |
| dc.subject | Civil and Structural Engineering | en |
| dc.subject | Computer Science Applications | en |
| dc.subject | Computer Graphics and Computer-Aided Design | en |
| dc.subject | Computational Theory and Mathematics | en |
| dc.subject.lcc | TA | en |
| dc.title | Deep learning–based nondestructive evaluation of reinforcement bars using ground-penetrating radar and electromagnetic induction data | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Li_etal_CCIE_deep_learning_based_AAM
- Size:
- 7.34 MB
- Format:
- Unknown data format
