University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Correlation analysis of deep learning methods in S-ICD screening

dc.contributor.authorElRefai, Mohamed
dc.contributor.authorAbouelasaad, Mohamed
dc.contributor.authorWiles, Benedict M
dc.contributor.authorDunn, Anthony J
dc.contributor.authorConiglio, Stefano
dc.contributor.authorZemkoho, Alain B
dc.contributor.authorMorgan, John
dc.contributor.authorRoberts, Paul R
dc.contributor.institutionUniversity of Aberdeen.Medical Sciencesen
dc.date.accessioned2023-04-05T13:51:01Z
dc.date.available2023-04-05T13:51:01Z
dc.date.issued2023-07
dc.description.statusPeer revieweden
dc.format.extent11
dc.format.extent1179757
dc.identifier229536620
dc.identifieraaa53ba1-227c-4b38-bb6e-a1fb1f40636d
dc.identifier36920649
dc.identifier85150740676
dc.identifier.citationElRefai, M, Abouelasaad, M, Wiles, B M, Dunn, A J, Coniglio, S, Zemkoho, A B, Morgan, J & Roberts, P R 2023, 'Correlation analysis of deep learning methods in S-ICD screening', Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, vol. 28, no. 4, e13056. https://doi.org/10.1111/anec.13056en
dc.identifier.doi10.1111/anec.13056
dc.identifier.iss4en
dc.identifier.issn1082-720X
dc.identifier.otherORCID: /0000-0002-1226-5335/work/132961689
dc.identifier.urihttps://hdl.handle.net/2164/20415
dc.identifier.vol28en
dc.language.isoeng
dc.relation.ispartofAnnals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Incen
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subjectdeep learning toolsen
dc.subjectscreeningen
dc.subjectsubcutaneous implantable cardiac defibrillatoren
dc.subjectR Medicineen
dc.subject.lccRen
dc.titleCorrelation analysis of deep learning methods in S-ICD screeningen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
NoElRefai_etal_ANE_Correlation_analysis_of_VOR.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format

Collections