University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Unsupervised feature learning and clustering of particles imaged in raw holograms using an autoencoder

dc.contributor.authorLiu, Zonghua
dc.contributor.authorThevar, Thangavel
dc.contributor.authorTakahashi, Tomoko
dc.contributor.authorBurns, Nicholas
dc.contributor.authorYamada, Takaki
dc.contributor.authorSangekar, Mehul
dc.contributor.authorLindsay, Dhugal
dc.contributor.authorWatson, John
dc.contributor.authorThornton, Blair
dc.contributor.institutionUniversity of Aberdeen.Engineeringen
dc.date.accessioned2022-09-26T23:12:50Z
dc.date.available2022-09-26T23:12:50Z
dc.date.embargoedUntil2022-09-27
dc.date.issued2021-10-01
dc.descriptionAcknowledgment. This work is funded by a joint UK-Japan research program (NERC-JST SICORP Marine Sensor Proof of Concept under project code NE/R01227X/1).en
dc.description.statusPeer revieweden
dc.format.extent11
dc.format.extent4725129
dc.identifier208025981
dc.identifier20bb3d3a-62b3-4c54-a3b4-4dc3e06694d8
dc.identifier85116346519
dc.identifier34612985
dc.identifier000704986400003
dc.identifier.citationLiu, Z, Thevar, T, Takahashi, T, Burns, N, Yamada, T, Sangekar, M, Lindsay, D, Watson, J & Thornton, B 2021, 'Unsupervised feature learning and clustering of particles imaged in raw holograms using an autoencoder', Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 38, no. 10, pp. 1570-1580. https://doi.org/10.1364/JOSAA.424271en
dc.identifier.doi10.1364/JOSAA.424271
dc.identifier.iss10en
dc.identifier.issn1084-7529
dc.identifier.urihttps://hdl.handle.net/2164/19226
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85116346519&partnerID=8YFLogxKen
dc.identifier.vol38en
dc.language.isoeng
dc.relation.ispartofJournal of the Optical Society of America A: Optics and Image Science, and Visionen
dc.subjectTA Engineering (General). Civil engineering (General)en
dc.subjectElectronic, Optical and Magnetic Materialsen
dc.subjectAtomic and Molecular Physics, and Opticsen
dc.subjectComputer Vision and Pattern Recognitionen
dc.subjectNatural Environment Research Council (NERC)en
dc.subjectNE/R01227X/1en
dc.subject.lccTAen
dc.titleUnsupervised feature learning and clustering of particles imaged in raw holograms using an autoencoderen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Liu_etal_unsupervised_feature_learnig_AAM.pdf
Size:
4.51 MB
Format:
Adobe Portable Document Format

Collections