University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Collective Almost Synchronization-based model to extract and predict features of EEG signals

dc.contributor.authorNguyen, Phuong Thi Mai
dc.contributor.authorHayashi, Yoshikatsu
dc.contributor.authorBaptista, M. S.
dc.contributor.authorKondo, Toshiyuki
dc.contributor.institutionUniversity of Aberdeen.Institute for Complex Systems and Mathematical Biology (ICSMB)en
dc.contributor.institutionUniversity of Aberdeen.Physicsen
dc.contributor.institutionUniversity of Aberdeen.Centre for Energy Transitionen
dc.date.accessioned2020-10-09T07:35:01Z
dc.date.available2020-10-09T07:35:01Z
dc.date.issued2020-10-01
dc.descriptionThis research was supported by JSPS KAKENHI (Grant Numbers: JP17KK0064, JP18K19732, JP19H05727, and JP20H02111) and a research grant from the Institute of Global Innovation Research at Tokyo University of Agriculture and Technology.en
dc.description.statusPeer revieweden
dc.format.extent16
dc.format.extent3859342
dc.identifier176009261
dc.identifier2a7f84ec-0c75-4d54-b122-3c6da52b204d
dc.identifier33004963
dc.identifier85091788972
dc.identifier000577143400105
dc.identifier.citationNguyen, P T M, Hayashi, Y, Baptista, M S & Kondo, T 2020, 'Collective Almost Synchronization-based model to extract and predict features of EEG signals', Scientific Reports, vol. 10, 16342. https://doi.org/10.1038/s41598-020-73346-zen
dc.identifier.doi10.1038/s41598-020-73346-z
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/2164/15215
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85091788972&partnerID=8YFLogxKen
dc.identifier.vol10en
dc.language.isoeng
dc.relation.ispartofScientific Reportsen
dc.subjectBiophysical modelsen
dc.subjectComputational modelsen
dc.subjectComputational neuroscienceen
dc.subjectHURST EXPONENTen
dc.subjectNETWORKSen
dc.subjectBRAIN DYNAMICSen
dc.subjectQC Physicsen
dc.subjectQA Mathematicsen
dc.subjectGeneralen
dc.subjectSupplementary Dataen
dc.subject.lccQCen
dc.subject.lccQAen
dc.titleCollective Almost Synchronization-based model to extract and predict features of EEG signalsen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Ngyuen_etal_SR_Collective_VOR.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format

Collections