University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Orbit Closures and Invariants

dc.contributor.authorBate, Michael
dc.contributor.authorGeranios, Haralampos
dc.contributor.authorMartin, Benjamin
dc.contributor.institutionUniversity of Aberdeen.Mathematical Scienceen
dc.date.accessioned2019-01-28T09:00:31Z
dc.date.available2019-01-28T09:00:31Z
dc.date.issued2019-12
dc.descriptionThe first author would like to thank Sebastian Herpel for the conversations we had which led to the first iteration of some of the ideas in this paper, and also Stephen Donkin for some very helpful nudges towards the right literature. All three authors acknowledge the funding of EPSRC grant EP/L005328/1. We would like to thank the anonymous referee for their very insightful comments and for pointing out a subtle gap in the proof of Theorem 1.1.en
dc.description.statusPeer revieweden
dc.format.extent39
dc.format.extent621194
dc.identifier141039308
dc.identifier02bb85f2-4c0f-4c2a-8309-e82b90b356d0
dc.identifier85060604702
dc.identifier000495574800011
dc.identifier.citationBate, M, Geranios, H & Martin, B 2019, 'Orbit Closures and Invariants', Mathematische Zeitschrift, vol. 293, no. 3-4, pp. 1121-1159. https://doi.org/10.1007/s00209-019-02228-6en
dc.identifier.doi10.1007/s00209-019-02228-6
dc.identifier.iss3en
dc.identifier.issn0025-5874
dc.identifier.otherArXiv: http://arxiv.org/abs/1604.00924v1
dc.identifier.otherORCID: /0000-0002-6670-0857/work/54384837
dc.identifier.otherMendeley: dfecbad1-a04a-3e4f-89e0-af8d01933bc3
dc.identifier.urihttp://hdl.handle.net/2164/11836
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85060604702&partnerID=8YFLogxKen
dc.identifier.urlhttp://www.mendeley.com/research/orbit-closures-invariantsen
dc.identifier.urlhttps://abdn.pure.elsevier.com/en/en/researchoutput/orbit-closures-and-invariants(02bb85f2-4c0f-4c2a-8309-e82b90b356d0).htmlen
dc.identifier.urlhttps://arxiv.org/abs/1604.00924en
dc.identifier.vol293en
dc.language.isoeng
dc.relation.ispartofMathematische Zeitschriften
dc.subjectdouble cosetsen
dc.subjectetale sliceen
dc.subjectG-complete reducibilityen
dc.subjectGeometric invariant theoryen
dc.subjectquotient varietyen
dc.subjectQuotient varietyen
dc.subjectDouble cosetsen
dc.subjectG-Complete reducibilityen
dc.subjectÉtale sliceen
dc.subjectTUPLESen
dc.subjectCOMPLETE REDUCIBILITYen
dc.subjectINSTABILITYen
dc.subjectEtalesliceen
dc.subjectALGEBRAIC-GROUPSen
dc.subjectLIE-ALGEBRASen
dc.subjectREDUCTIVE SUBGROUPSen
dc.subjectDOUBLE COSET DENSITYen
dc.subjectCLOSED ORBITSen
dc.subjectCONJUGACY CLASSESen
dc.subjectQA Mathematicsen
dc.subjectGeneral Mathematicsen
dc.subjectEngineering and Physical Sciences Research Council (EPSRC)en
dc.subjectEP/L005328/1en
dc.subject.lccQAen
dc.titleOrbit Closures and Invariantsen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Bate2019_MZ_OrbitClosuresAndInvariants_VoR.pdf
Size:
606.63 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
8.31 KB
Format:
Plain Text
Description: