Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
| dc.contributor.author | Dai, Tianhong | |
| dc.contributor.author | Arulkumaran, Kai | |
| dc.contributor.author | Gerbert, Tamara | |
| dc.contributor.author | Tukra, Samyakh | |
| dc.contributor.author | Behbahani, Feryal | |
| dc.contributor.author | Bharath, Anil Anthony | |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.date.accessioned | 2022-12-08T21:38:01Z | |
| dc.date.available | 2022-12-08T21:38:01Z | |
| dc.date.issued | 2022-07-07 | |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 23 | |
| dc.format.extent | 10620447 | |
| dc.identifier | 221357000 | |
| dc.identifier | 8e4d12ba-5fee-44e0-8dd7-1d9ccd350c6e | |
| dc.identifier | 85128457623 | |
| dc.identifier.citation | Dai, T, Arulkumaran, K, Gerbert, T, Tukra, S, Behbahani, F & Bharath, A A 2022, 'Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation', Neurocomputing, vol. 493, pp. 143-165. https://doi.org/10.1016/j.neucom.2022.04.005 | en |
| dc.identifier.doi | 10.1016/j.neucom.2022.04.005 | |
| dc.identifier.issn | 0925-2312 | |
| dc.identifier.other | ORCID: /0000-0001-8904-1551/work/122287634 | |
| dc.identifier.other | Bibtex: DAI2022143 | |
| dc.identifier.uri | https://hdl.handle.net/2164/19707 | |
| dc.identifier.url | http://dx.doi.org/10.1016/j.neucom.2022.04.005 | en |
| dc.identifier.vol | 493 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Neurocomputing | en |
| dc.subject | Deep reinforcement learning | en |
| dc.subject | Generalisation | en |
| dc.subject | Interpretability | en |
| dc.subject | Saliency | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Dai_etal_Analysing_deep_reinforcement_VOR.pdf
- Size:
- 10.13 MB
- Format:
- Adobe Portable Document Format
