University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Attention-Based Deep Learning Methods for Predicting Gas Turbine Emissions

dc.contributor.authorPotts, Rebecca Lauren
dc.contributor.authorLeontidis, Georgios
dc.contributor.institutionUniversity of Aberdeen.Natural & Computing Sciencesen
dc.contributor.institutionUniversity of Aberdeen.Vice Principalsen
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Machine Learningen
dc.contributor.institutionUniversity of Aberdeen.Centre for Energy Transitionen
dc.date.accessioned2022-11-24T20:41:02Z
dc.date.available2022-11-24T20:41:02Z
dc.date.issued2023-01-23
dc.descriptionThis work was supported by the Engineering and Physical Sciences Research Council [EP/W522089/1].en
dc.description.statusPeer revieweden
dc.format.extent3
dc.format.extent189871
dc.identifier222474882
dc.identifierb1961909-3c8a-4562-ad56-caf67e7e4cdb
dc.identifier.citationPotts, R L & Leontidis, G 2023, 'Attention-Based Deep Learning Methods for Predicting Gas Turbine Emissions', Northern Lights Deep Learning Conference 2023 (Extended Abstracts), Tromso, Norway, 9/01/23 - 13/01/23.en
dc.identifier.citationconferenceen
dc.identifier.otherORCID: /0000-0001-6671-5568/work/128323370
dc.identifier.urihttps://hdl.handle.net/2164/19602
dc.language.isoeng
dc.subjectSDG 9 - Industry, Innovation, and Infrastructureen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject2040 Data and Artificial Intelligenceen
dc.subjectArtificial intelligenceen
dc.subjectDeep Learningen
dc.subjectGas Turbinesen
dc.subjectpredicting emissionsen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectEngineering and Physical Sciences Research Council (EPSRC)en
dc.subjectEP/W522089/1en
dc.subject.lccQA75en
dc.titleAttention-Based Deep Learning Methods for Predicting Gas Turbine Emissionsen
dc.typeConference posteren

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Potts_NLDL_extended_abstract.pdf
Size:
185.42 KB
Format:
Adobe Portable Document Format

Collections