University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Knowledge-driven stock trend prediction and explanation via temporal convolutional network

dc.contributor.authorDeng, Shumin
dc.contributor.authorZhang, Ningyu
dc.contributor.authorZhang, Wen
dc.contributor.authorChen, Jiaoyan
dc.contributor.authorPan, Jeff Z.
dc.contributor.authorChen, Huajun
dc.contributor.editorLiu, Ling
dc.contributor.editorWhite, Ryen
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.date.accessioned2019-07-01T12:20:05Z
dc.date.available2019-07-01T12:20:05Z
dc.date.issued2019-05-13
dc.descriptionThe authors would like to acknowledge that this work is funded by NSFC 61473260/91846204, national key research program YS2018YFB140004 as well as Natural Science Foundation of Zhejiang Province of China (LQ19F030001), and supported by Alibaba-Zhejiang University Joint Institute of Frontier Technologies.en
dc.format.extent8
dc.format.extent1062481
dc.identifier145263454
dc.identifier1f94f8f7-4748-4c6d-be80-b0cdaadb6cd3
dc.identifier85066884024
dc.identifier000474353100106
dc.identifier.citationDeng, S, Zhang, N, Zhang, W, Chen, J, Pan, J Z & Chen, H 2019, Knowledge-driven stock trend prediction and explanation via temporal convolutional network. in L Liu & R White (eds), Companion Proceedings of the 2019 World Wide Web Conference (WWW ’19 Companion). Association for Computing Machinery, Inc, New York, pp. 678-685, 2019 World Wide Web Conference, WWW 2019, San Francisco, United States, 13/05/19. https://doi.org/10.1145/3308560.3317701en
dc.identifier.citationconferenceen
dc.identifier.doi10.1145/3308560.3317701
dc.identifier.isbn9781450366755
dc.identifier.otherMendeley: ff665844-6744-3842-9d94-17857d0bd15f
dc.identifier.urihttp://hdl.handle.net/2164/12473
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85066884024&partnerID=8YFLogxKen
dc.identifier.urlhttp://dl.acm.org/citation.cfm?doid=3308560.3317701en
dc.identifier.urlhttp://www.mendeley.com/research/knowledgedriven-stock-trend-prediction-explanation-via-temporal-convolutional-networken
dc.language.isoeng
dc.publisherAssociation for Computing Machinery, Inc
dc.relation.ispartofCompanion Proceedings of the 2019 World Wide Web Conference (WWW ’19 Companion)en
dc.subjectEvent extractionen
dc.subjectExplanationen
dc.subjectKnowledge-drivenen
dc.subjectPredictive analyticsen
dc.subjectStock trend predictionen
dc.subjectStructureden
dc.subjectUnstructureden
dc.subjectREPRESENTATIONSen
dc.subjectpredictive analyticsen
dc.subjectstock trend predictionen
dc.subjectexplanationen
dc.subjectevent extractionen
dc.subjectunstructureden
dc.subjectstructureden
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectSoftwareen
dc.subjectComputer Networks and Communicationsen
dc.subject.lccQA75en
dc.titleKnowledge-driven stock trend prediction and explanation via temporal convolutional networken
dc.typeConference itemen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
p678_deng.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
8.3 KB
Format:
Plain Text
Description: