University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Knowledge-Driven Intelligent Survey Systems Towards Open Science

dc.contributor.authorEdelstein, Elspeth
dc.contributor.authorPan, Jeff Z.
dc.contributor.authorSoares, Ricardo
dc.contributor.authorWyner, Adam
dc.contributor.institutionUniversity of Aberdeen.Linguisticsen
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.date.accessioned2020-05-01T10:40:00Z
dc.date.available2020-05-01T10:40:00Z
dc.date.issued2020-07
dc.descriptionOpen Access via Springer Compact Agreement. Acknowledgements: We are grateful to all of our survey participants, and to Anne Eschenbruecher, Sally Lamond, and Evelyn Williams for their assistance in participant recruitment. We are also grateful to Patrik Bansky for his work on refinement of the survey system.en
dc.description.statusPeer revieweden
dc.format.extent25
dc.format.extent1539656
dc.identifier143568102
dc.identifier1678a59e-a595-4bc5-a6dc-65d73a8358e8
dc.identifier85081887293
dc.identifier000523098300001
dc.identifier.citationEdelstein, E, Pan, J Z, Soares, R & Wyner, A 2020, 'Knowledge-Driven Intelligent Survey Systems Towards Open Science', New Generation Computing, vol. 38, no. 3, pp. 397-421. https://doi.org/10.1007/s00354-020-00087-yen
dc.identifier.doi10.1007/s00354-020-00087-y
dc.identifier.iss3en
dc.identifier.issn0288-3635
dc.identifier.otherSCOPUS: 85081887293
dc.identifier.urihttps://hdl.handle.net/2164/14219
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85081887293&partnerID=8YFLogxKen
dc.identifier.vol38en
dc.language.isoeng
dc.relation.ispartofNew Generation Computingen
dc.subjectknowledge graphen
dc.subjectintelligent survey systemen
dc.subjectgrammaticality judgmentsen
dc.subjectGrammaticality judgmentsen
dc.subjectIntelligent survey systemen
dc.subjectKnowledge Graphen
dc.subjectP Philology. Linguisticsen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectSoftwareen
dc.subjectTheoretical Computer Scienceen
dc.subjectHardware and Architectureen
dc.subjectComputer Networks and Communicationsen
dc.subject.lccP1en
dc.subject.lccQA75en
dc.titleKnowledge-Driven Intelligent Survey Systems Towards Open Scienceen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Edelstein2020_Article_Knowledge_DrivenIntelligentSur.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format

Collections