University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species

dc.contributor.authorPatton, Philip T.
dc.contributor.authorCheeseman, Ted
dc.contributor.authorAbe, Kenshin
dc.contributor.authorYamaguchi, Taiki
dc.contributor.authorReade, Walter
dc.contributor.authorSoutherland, Ken
dc.contributor.authorHoward, Addison
dc.contributor.authorOleson, Erin M.
dc.contributor.authorAllen, Jason B.
dc.contributor.authorAshe, Erin
dc.contributor.authorAthayde, Aline
dc.contributor.authorBaird, Robin W.
dc.contributor.authorBasran, Charla
dc.contributor.authorCabrera, Elsa
dc.contributor.authorCalambokidis, John
dc.contributor.authorCardoso, Júlio
dc.contributor.authorCarroll, Emma L.
dc.contributor.authorCesario, Amina
dc.contributor.authorCheney, Barbara J.
dc.contributor.authorCorsi, Enrico
dc.contributor.authorCurrie, Jens
dc.contributor.authorDurban, John W.
dc.contributor.authorFalcone, Erin A.
dc.contributor.authorFearnbach, Holly
dc.contributor.authorFlynn, Kiirsten
dc.contributor.authorFranklin, Trish
dc.contributor.authorFranklin, Wally
dc.contributor.authorGalletti Vernazzani, Bárbara
dc.contributor.authorGenov, Tilen
dc.contributor.authorHill, Marie
dc.contributor.authorJohnston, David R.
dc.contributor.authorKeene, Erin L.
dc.contributor.authorMahaffy, Sabre D.
dc.contributor.authorMcGuire, Tamara L.
dc.contributor.authorMcPherson, Liah
dc.contributor.authorMeyer, Catherine
dc.contributor.authorMichaud, Robert
dc.contributor.authorMiliou, Anastasia
dc.contributor.authorOrbach, Dara N.
dc.contributor.authorPearson, Heidi C.
dc.contributor.authorRasmussen, Marianne H.
dc.contributor.authorRayment, William J.
dc.contributor.authorRinaldi, Caroline
dc.contributor.authorRinaldi, Renato
dc.contributor.authorSiciliano, Salvatore
dc.contributor.authorStack, Stephanie
dc.contributor.authorTintore, Beatriz
dc.contributor.authorTorres, Leigh G.
dc.contributor.authorTowers, Jared R.
dc.contributor.authorTrotter, Cameron
dc.contributor.authorTyson Moore, Reny
dc.contributor.authorWeir, Caroline R.
dc.contributor.authorWellard, Rebecca
dc.contributor.authorWells, Randall
dc.contributor.authorYano, Kymberly M.
dc.contributor.authorZaeschmar, Jochen R.
dc.contributor.authorBejder, Lars
dc.contributor.institutionUniversity of Aberdeen.Biological Sciencesen
dc.date.accessioned2023-10-04T15:11:01Z
dc.date.available2023-10-04T15:11:01Z
dc.date.issued2023-10
dc.descriptionWe thank the countless individuals who collected and/or processed the nearly 85,000 images used in this study and those who assisted, particularly those who sorted these images from the millions that did not end up in the catalogues. Additionally, we thank the other Kaggle competitors who helped develop the ideas, models and data used here, particularly those who released their datasets to the public. The graduate assistantship for Philip T. Patton was funded by the NOAA Fisheries QUEST Fellowship. This paper represents HIMB and SOEST contribution numbers 1932 and 11679, respectively. The technical support and advanced computing resources from University of Hawaii Information Technology Services—Cyberinfrastructure, funded in part by the National Science Foundation CC* awards # 2201428 and # 2232862 are gratefully acknowledged. Every photo–identification image was collected under permits according to relevant national guidelines, regulation and legislation.en
dc.description.statusPeer revieweden
dc.format.extent15
dc.format.extent7796697
dc.identifier265404382
dc.identifier052b15ef-5891-4ff2-a9d7-cbe8cedd2b55
dc.identifier85164831825
dc.identifier.citationPatton, P T, Cheeseman, T, Abe, K, Yamaguchi, T, Reade, W, Southerland, K, Howard, A, Oleson, E M, Allen, J B, Ashe, E, Athayde, A, Baird, R W, Basran, C, Cabrera, E, Calambokidis, J, Cardoso, J, Carroll, E L, Cesario, A, Cheney, B J, Corsi, E, Currie, J, Durban, J W, Falcone, E A, Fearnbach, H, Flynn, K, Franklin, T, Franklin, W, Galletti Vernazzani, B, Genov, T, Hill, M, Johnston, D R, Keene, E L, Mahaffy, S D, McGuire, T L, McPherson, L, Meyer, C, Michaud, R, Miliou, A, Orbach, D N, Pearson, H C, Rasmussen, M H, Rayment, W J, Rinaldi, C, Rinaldi, R, Siciliano, S, Stack, S, Tintore, B, Torres, L G, Towers, J R, Trotter, C, Tyson Moore, R, Weir, C R, Wellard, R, Wells, R, Yano, K M, Zaeschmar, J R & Bejder, L 2023, 'A deep learning approach to photo–identification demonstrates high performance on two dozen cetacean species', Methods in Ecology and Evolution, vol. 14, no. 10, pp. 2611-2625. https://doi.org/10.1111/2041-210X.14167en
dc.identifier.doi10.1111/2041-210X.14167
dc.identifier.iss10en
dc.identifier.issn2041-210X
dc.identifier.otherRIS: urn:5F4B7B8297AD6C0AB2A7B5E16B06FAB4
dc.identifier.otherORCID: /0000-0003-4534-5582/work/138945233
dc.identifier.urihttps://hdl.handle.net/2164/21834
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85164831825&partnerID=8YFLogxKen
dc.identifier.vol14en
dc.language.isoeng
dc.relation.ispartofMethods in Ecology and Evolutionen
dc.subjectartificial intelligenceen
dc.subjectcetaceanen
dc.subjectcomputer visionen
dc.subjectconvolutional neural networken
dc.subjectdeep learningen
dc.subjectdolphinen
dc.subjectdorsalen
dc.subjectlateralen
dc.subjectmachine learningen
dc.subjectmulti–speciesen
dc.subjectphoto–identificationen
dc.subjectwhaleen
dc.subjectQL Zoologyen
dc.subjectSupplementary Dataen
dc.subject.lccQLen
dc.titleA deep learning approach to photo–identification demonstrates high performance on two dozen cetacean speciesen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Patton_etal_MEE_A_Deep_Learning_VoR.pdf
Size:
7.44 MB
Format:
Adobe Portable Document Format

Collections