Automatic segmentation of radar data from the Chang’E-4 mission using unsupervised machine learning : A data-driven interpretation approach
| dc.contributor.author | Giannakis, Iraklis | |
| dc.contributor.author | Mcdonald, Ciaran | |
| dc.contributor.author | Feng, Jianqing | |
| dc.contributor.author | Zhou, Feng | |
| dc.contributor.author | Su, Yan | |
| dc.contributor.author | Martin-Torres, Javier | |
| dc.contributor.author | Zorzano Mier, Maria-Paz | |
| dc.contributor.author | Warren, Craig | |
| dc.contributor.author | Giannopoulos, Antonios | |
| dc.contributor.author | Leontidis, Georgios | |
| dc.contributor.institution | University of Aberdeen.Geology and Geophysics | en |
| dc.contributor.institution | University of Aberdeen.Centre for Energy Transition | en |
| dc.contributor.institution | University of Aberdeen.Planetary Sciences | en |
| dc.contributor.institution | University of Aberdeen.Vice Principals | en |
| dc.contributor.institution | University of Aberdeen.Data and Artificial Intelligence | en |
| dc.date.accessioned | 2025-04-01T11:09:00Z | |
| dc.date.available | 2025-04-01T11:09:00Z | |
| dc.date.issued | 2024-07-15 | |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 11 | |
| dc.format.extent | 3007119 | |
| dc.identifier | 289289084 | |
| dc.identifier | 0086c6f9-e53c-4017-8f9b-d635c1febbdc | |
| dc.identifier | 85192697852 | |
| dc.identifier.citation | Giannakis, I, Mcdonald, C, Feng, J, Zhou, F, Su, Y, Martin-Torres, J, Zorzano Mier, M-P, Warren, C, Giannopoulos, A & Leontidis, G 2024, 'Automatic segmentation of radar data from the Chang’E-4 mission using unsupervised machine learning : A data-driven interpretation approach', Icarus, vol. 417, 116108. https://doi.org/10.1016/j.icarus.2024.116108 | en |
| dc.identifier.doi | 10.1016/j.icarus.2024.116108 | |
| dc.identifier.issn | 0019-1035 | |
| dc.identifier.other | ORCID: /0000-0002-7672-8992/work/159507973 | |
| dc.identifier.other | ORCID: /0000-0001-6479-2236/work/159508102 | |
| dc.identifier.other | ORCID: /0000-0001-6671-5568/work/159509466 | |
| dc.identifier.uri | https://hdl.handle.net/2164/25242 | |
| dc.identifier.vol | 417 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Icarus | en |
| dc.subject | Segmentation | en |
| dc.subject | Chang’E-4 | en |
| dc.subject | Yutu-2 | en |
| dc.subject | Ground Penetrating Radar | en |
| dc.subject | GPR | en |
| dc.subject | Von Kármán crater | en |
| dc.subject | Signal processing | en |
| dc.subject | Machine learning | en |
| dc.subject | Unsupervised machine learning | en |
| dc.subject | Clustering | en |
| dc.subject | QE Geology | en |
| dc.subject | QB Astronomy | en |
| dc.subject | Supplementary Data | en |
| dc.subject | DAS | en |
| dc.subject.lcc | QE | en |
| dc.subject.lcc | QB | en |
| dc.title | Automatic segmentation of radar data from the Chang’E-4 mission using unsupervised machine learning : A data-driven interpretation approach | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Giannakis_etal_I_Automatic_Segmentation_Of_VoR.pdf
- Size:
- 2.87 MB
- Format:
- Adobe Portable Document Format
