University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Imputation of missing sub-hourly precipitation data in a large sensor network : a machine learning approach

dc.contributor.authorChivers, Benedict
dc.contributor.authorWallbank, John
dc.contributor.authorCole, Steven
dc.contributor.authorSebek, Ondrej
dc.contributor.authorStanley, Simon
dc.contributor.authorFry, Matthew
dc.contributor.authorLeontidis, Georgios
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Centre for Energy Transitionen
dc.contributor.institutionUniversity of Aberdeen.Machine Learningen
dc.date.accessioned2021-05-29T23:14:39Z
dc.date.available2021-05-29T23:14:39Z
dc.date.embargoedUntil2021-05-30
dc.date.issued2020-09
dc.descriptionThis research was supported by a UKRI-NERC Constructing a Digital Environment Strategic Priority grant “Engineering Transformation for the Integration of Sensor Networks: A Feasibility Study” [NE/S016236/1 & NE/S016244/1].en
dc.description.statusPeer revieweden
dc.format.extent12
dc.format.extent1292171
dc.identifier170482700
dc.identifier3562c87e-d3f3-4fef-addb-3b7e2ef9a20f
dc.identifier85085739845
dc.identifier.citationChivers, B, Wallbank, J, Cole, S, Sebek, O, Stanley, S, Fry, M & Leontidis, G 2020, 'Imputation of missing sub-hourly precipitation data in a large sensor network : a machine learning approach', Journal of Hydrology, vol. 588, 125126. https://doi.org/10.1016/j.jhydrol.2020.125126en
dc.identifier.doi10.1016/j.jhydrol.2020.125126
dc.identifier.issn0022-1694
dc.identifier.otherORCID: /0000-0001-6671-5568/work/76211663
dc.identifier.urihttps://hdl.handle.net/2164/16578
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85085739845&partnerID=8YFLogxKen
dc.identifier.vol588en
dc.language.isoeng
dc.relation.ispartofJournal of Hydrologyen
dc.subjectMachine learningen
dc.subjectData imputationen
dc.subjectEnvironmental sensor networksen
dc.subjectPrecipitationen
dc.subjectSoil moistureen
dc.subjectGradient boosted treesen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectEnvironmental Science (miscellaneous)en
dc.subjectArtificial Intelligenceen
dc.subjectComputer Science Applicationsen
dc.subjectWater Science and Technologyen
dc.subjectNatural Environment Research Council (NERC)en
dc.subjectNE/S016236/1en
dc.subjectNE/S016244/1en
dc.subject.lccQA75en
dc.titleImputation of missing sub-hourly precipitation data in a large sensor network : a machine learning approachen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Civers_etal_JournalHydrology_Imputation_AAM.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format

Collections