University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Transfer Learning with Optimal Transportation and Frequency Mixup for EEG-based Motor Imagery Recognition

dc.contributor.authorChen, Peiyin
dc.contributor.authorWang, He
dc.contributor.authorSun, Xinlin
dc.contributor.authorLi, Haoyu
dc.contributor.authorGrebogi, Celso
dc.contributor.authorGao, Zhongke
dc.contributor.institutionUniversity of Aberdeen.Institute for Complex Systems and Mathematical Biology (ICSMB)en
dc.contributor.institutionUniversity of Aberdeen.Physicsen
dc.date.accessioned2022-10-24T10:10:01Z
dc.date.available2022-10-24T10:10:01Z
dc.date.issued2022-10
dc.description.statusPeer revieweden
dc.format.extent10
dc.format.extent3032602
dc.identifier219827692
dc.identifier067a09d0-b333-4f88-994c-dbfadb9bfab8
dc.identifier36194720
dc.identifier85140416346
dc.identifier.citationChen, P, Wang, H, Sun, X, Li, H, Grebogi, C & Gao, Z 2022, 'Transfer Learning with Optimal Transportation and Frequency Mixup for EEG-based Motor Imagery Recognition', IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2866-2875. https://doi.org/10.1109/tnsre.2022.3211881en
dc.identifier.doi10.1109/tnsre.2022.3211881
dc.identifier.issn1558-0210
dc.identifier.otherunpaywall: 10.1109/tnsre.2022.3211881
dc.identifier.otherORCID: /0000-0002-9811-4617/work/120621591
dc.identifier.urihttps://hdl.handle.net/2164/19423
dc.identifier.vol30en
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Neural Systems and Rehabilitation Engineeringen
dc.subjectSubstantive connection via an eligible employment contracten
dc.subjectelectroencephalogram (EEG)en
dc.subjectbrain-computer interface (BCI)en
dc.subjecttransfer learningen
dc.subjectoptimal transportationen
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleTransfer Learning with Optimal Transportation and Frequency Mixup for EEG-based Motor Imagery Recognitionen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Chen_etal_TNSRE_Transfer_Learning_With_VoR.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format

Collections