Fine-Grained Multivariate Time Series Anomaly Detection in IoT
| dc.contributor.author | He, Shiming | |
| dc.contributor.author | Guo, Meng | |
| dc.contributor.author | Yang, Bo | |
| dc.contributor.author | Alfarraj, Osama | |
| dc.contributor.author | Tolba, Amr | |
| dc.contributor.author | Sharma, Pradip Kumar | |
| dc.contributor.author | Yan, Xi'ai | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en | 
| dc.contributor.institution | University of Aberdeen.Cybersecurity and Privacy | en | 
| dc.date.accessioned | 2023-09-14T10:31:01Z | |
| dc.date.available | 2023-09-14T10:31:01Z | |
| dc.date.issued | 2023-04-29 | |
| dc.description | Funding Information: Funding Statement: This work was supported in part by the National Natural Science Foundation of China under Grant 62272062, the Researchers Supporting Project number. (RSP2023R102) King Saud University, Riyadh, Saudi Arabia, the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003, the National Science Foundation of Hunan Province under Grant 2020JJ2029, the Hunan Provincial Key Research and Development Program under Grant 2022GK2019, the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006, the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143, and the Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education (Changsha University of Science Technology) under Grant 21KB07. Publisher Copyright: © 2023 Tech Science Press. All rights reserved. | en | 
| dc.description.status | Peer reviewed | en | 
| dc.format.extent | 21 | |
| dc.format.extent | 1565762 | |
| dc.identifier | 278968604 | |
| dc.identifier | 5ad5b7a7-03e2-4c60-9874-332b1a32cffc | |
| dc.identifier | 85161339439 | |
| dc.identifier.citation | He, S, Guo, M, Yang, B, Alfarraj, O, Tolba, A, Sharma, P K & Yan, X 2023, 'Fine-Grained Multivariate Time Series Anomaly Detection in IoT', Computers, Materials and Continua, vol. 75, no. 3, pp. 5027-5047. https://doi.org/10.32604/cmc.2023.038551 | en | 
| dc.identifier.doi | 10.32604/cmc.2023.038551 | |
| dc.identifier.iss | 3 | en | 
| dc.identifier.issn | 1546-2218 | |
| dc.identifier.other | ORCID: /0000-0001-6620-9083/work/142570497 | |
| dc.identifier.uri | https://hdl.handle.net/2164/21668 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85161339439&partnerID=8YFLogxK | en | 
| dc.identifier.vol | 75 | en | 
| dc.language.iso | eng | |
| dc.relation.ispartof | Computers, Materials and Continua | en | 
| dc.subject | fine-grained anomaly detection | en | 
| dc.subject | graph attention neural network | en | 
| dc.subject | Multivariate time series | en | 
| dc.subject | QA75 Electronic computers. Computer science | en | 
| dc.subject | Biomaterials | en | 
| dc.subject | Modelling and Simulation | en | 
| dc.subject | Mechanics of Materials | en | 
| dc.subject | Computer Science Applications | en | 
| dc.subject | Electrical and Electronic Engineering | en | 
| dc.subject.lcc | QA75 | en | 
| dc.title | Fine-Grained Multivariate Time Series Anomaly Detection in IoT | en | 
| dc.type | Journal article | en | 
Files
Original bundle
1 - 1 of 1
- Name:
 - He_etal_CMC_Fine-Grained_Multivariate_Time_VOR.pdf
 - Size:
 - 1.49 MB
 - Format:
 - Adobe Portable Document Format
 
