University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Fine-Grained Multivariate Time Series Anomaly Detection in IoT

dc.contributor.authorHe, Shiming
dc.contributor.authorGuo, Meng
dc.contributor.authorYang, Bo
dc.contributor.authorAlfarraj, Osama
dc.contributor.authorTolba, Amr
dc.contributor.authorSharma, Pradip Kumar
dc.contributor.authorYan, Xi'ai
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Cybersecurity and Privacyen
dc.date.accessioned2023-09-14T10:31:01Z
dc.date.available2023-09-14T10:31:01Z
dc.date.issued2023-04-29
dc.descriptionFunding Information: Funding Statement: This work was supported in part by the National Natural Science Foundation of China under Grant 62272062, the Researchers Supporting Project number. (RSP2023R102) King Saud University, Riyadh, Saudi Arabia, the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003, the National Science Foundation of Hunan Province under Grant 2020JJ2029, the Hunan Provincial Key Research and Development Program under Grant 2022GK2019, the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006, the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143, and the Open Fund of Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education (Changsha University of Science Technology) under Grant 21KB07. Publisher Copyright: © 2023 Tech Science Press. All rights reserved.en
dc.description.statusPeer revieweden
dc.format.extent21
dc.format.extent1565762
dc.identifier278968604
dc.identifier5ad5b7a7-03e2-4c60-9874-332b1a32cffc
dc.identifier85161339439
dc.identifier.citationHe, S, Guo, M, Yang, B, Alfarraj, O, Tolba, A, Sharma, P K & Yan, X 2023, 'Fine-Grained Multivariate Time Series Anomaly Detection in IoT', Computers, Materials and Continua, vol. 75, no. 3, pp. 5027-5047. https://doi.org/10.32604/cmc.2023.038551en
dc.identifier.doi10.32604/cmc.2023.038551
dc.identifier.iss3en
dc.identifier.issn1546-2218
dc.identifier.otherORCID: /0000-0001-6620-9083/work/142570497
dc.identifier.urihttps://hdl.handle.net/2164/21668
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85161339439&partnerID=8YFLogxKen
dc.identifier.vol75en
dc.language.isoeng
dc.relation.ispartofComputers, Materials and Continuaen
dc.subjectfine-grained anomaly detectionen
dc.subjectgraph attention neural networken
dc.subjectMultivariate time seriesen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectBiomaterialsen
dc.subjectModelling and Simulationen
dc.subjectMechanics of Materialsen
dc.subjectComputer Science Applicationsen
dc.subjectElectrical and Electronic Engineeringen
dc.subject.lccQA75en
dc.titleFine-Grained Multivariate Time Series Anomaly Detection in IoTen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
He_etal_CMC_Fine-Grained_Multivariate_Time_VOR.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

Collections