Deep learning methods for screening patients' S-ICD implantation eligibility.
| dc.contributor.author | Dunn, Anthony | |
| dc.contributor.author | Elrefai, Mohamed | |
| dc.contributor.author | Roberts, Paul | |
| dc.contributor.author | Coniglio, Stefano | |
| dc.contributor.author | Wiles, Benedict | |
| dc.contributor.author | Zemkoho, Alain | |
| dc.date.accessioned | 2024-08-22T14:31:00Z | |
| dc.date.available | 2024-08-22T14:31:00Z | |
| dc.date.issued | 2021-09 | |
| dc.description | Acknowledgments The work of Anthony J. Dunn is jointly funded by Decision Analysis Services Ltd. and EPSRC through the Studentship with Reference EP/R513325/1. The work of Alain B. Zemkoho is supported by the EPSRC grant EP/V049038/1 and the Alan Turing Institute under the EPSRC grant EP/N510129/1. The feedback provided by Sion Cave (DAS Ltd) on the initial draft of the paper is gratefully acknowledged. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 12 | |
| dc.format.extent | 2889864 | |
| dc.identifier | 226606082 | |
| dc.identifier | 73f7b819-6eac-48f9-881b-655c650ed528 | |
| dc.identifier | 34531008 | |
| dc.identifier | 85113280041 | |
| dc.identifier.citation | Dunn, A, Elrefai, M, Roberts, P, Coniglio, S, Wiles, B & Zemkoho, A 2021, 'Deep learning methods for screening patients' S-ICD implantation eligibility.', Artificial Intelligence in Medicine, vol. 119, 102139. https://doi.org/10.1016/j.artmed.2021.102139 | en |
| dc.identifier.doi | 10.1016/j.artmed.2021.102139 | |
| dc.identifier.issn | 0933-3657 | |
| dc.identifier.other | ORCID: /0000-0002-1226-5335/work/100738106 | |
| dc.identifier.uri | https://hdl.handle.net/2164/24094 | |
| dc.identifier.url | https://doi.org/10.1016/j.artmed.2021.102139 | en |
| dc.identifier.vol | 119 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Artificial Intelligence in Medicine | en |
| dc.subject | Subcutaneous implantable cardioverter-defibrillators | en |
| dc.subject | Sudden cardiac death | en |
| dc.subject | Ventricular arrhythmia | en |
| dc.subject | Electrocardiogram | en |
| dc.subject | Deep learning | en |
| dc.subject | Convolutional neural networks | en |
| dc.subject | Phase space reconstruction | en |
| dc.subject | Patient screening | en |
| dc.subject | RC Internal medicine | en |
| dc.subject | Engineering and Physical Sciences Research Council (EPSRC) | en |
| dc.subject | EP/R513325/1 | en |
| dc.subject | EP/V049038/1 | en |
| dc.subject | EP/N510129/1 | en |
| dc.subject | Supplementary Data | en |
| dc.subject.lcc | RC | en |
| dc.title | Deep learning methods for screening patients' S-ICD implantation eligibility. | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Dunn_etal_AIIM_Deep_Learning_Methods_VOR.pdf
- Size:
- 2.76 MB
- Format:
- Adobe Portable Document Format
