University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Deep learning methods for screening patients' S-ICD implantation eligibility.

dc.contributor.authorDunn, Anthony
dc.contributor.authorElrefai, Mohamed
dc.contributor.authorRoberts, Paul
dc.contributor.authorConiglio, Stefano
dc.contributor.authorWiles, Benedict
dc.contributor.authorZemkoho, Alain
dc.date.accessioned2024-08-22T14:31:00Z
dc.date.available2024-08-22T14:31:00Z
dc.date.issued2021-09
dc.descriptionAcknowledgments The work of Anthony J. Dunn is jointly funded by Decision Analysis Services Ltd. and EPSRC through the Studentship with Reference EP/R513325/1. The work of Alain B. Zemkoho is supported by the EPSRC grant EP/V049038/1 and the Alan Turing Institute under the EPSRC grant EP/N510129/1. The feedback provided by Sion Cave (DAS Ltd) on the initial draft of the paper is gratefully acknowledged.en
dc.description.statusPeer revieweden
dc.format.extent12
dc.format.extent2889864
dc.identifier226606082
dc.identifier73f7b819-6eac-48f9-881b-655c650ed528
dc.identifier34531008
dc.identifier85113280041
dc.identifier.citationDunn, A, Elrefai, M, Roberts, P, Coniglio, S, Wiles, B & Zemkoho, A 2021, 'Deep learning methods for screening patients' S-ICD implantation eligibility.', Artificial Intelligence in Medicine, vol. 119, 102139. https://doi.org/10.1016/j.artmed.2021.102139en
dc.identifier.doi10.1016/j.artmed.2021.102139
dc.identifier.issn0933-3657
dc.identifier.otherORCID: /0000-0002-1226-5335/work/100738106
dc.identifier.urihttps://hdl.handle.net/2164/24094
dc.identifier.urlhttps://doi.org/10.1016/j.artmed.2021.102139en
dc.identifier.vol119en
dc.language.isoeng
dc.relation.ispartofArtificial Intelligence in Medicineen
dc.subjectSubcutaneous implantable cardioverter-defibrillatorsen
dc.subjectSudden cardiac deathen
dc.subjectVentricular arrhythmiaen
dc.subjectElectrocardiogramen
dc.subjectDeep learningen
dc.subjectConvolutional neural networksen
dc.subjectPhase space reconstructionen
dc.subjectPatient screeningen
dc.subjectRC Internal medicineen
dc.subjectEngineering and Physical Sciences Research Council (EPSRC)en
dc.subjectEP/R513325/1en
dc.subjectEP/V049038/1en
dc.subjectEP/N510129/1en
dc.subjectSupplementary Dataen
dc.subject.lccRCen
dc.titleDeep learning methods for screening patients' S-ICD implantation eligibility.en
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dunn_etal_AIIM_Deep_Learning_Methods_VOR.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format

Collections