University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Empirical and dynamic approaches for modelling the yield and N content of European grasslands

dc.contributor.authorDellar, Martha
dc.contributor.authorTopp, Cairistiona
dc.contributor.authorPardo, Guillermo
dc.contributor.authordel Prado, Agustin
dc.contributor.authorFitton, Nuala
dc.contributor.authorHolmes, David
dc.contributor.authorBanos, Gerogios
dc.contributor.authorWall, Eileen
dc.contributor.institutionUniversity of Aberdeen.Biological Sciencesen
dc.date.accessioned2019-10-22T11:45:01Z
dc.date.available2019-10-22T11:45:01Z
dc.date.issued2019-12
dc.descriptionThis work was supported by the Horizon 2020 SFS-01c-2015 project entitled “Innovation of sustainable sheep and goat production in Europe (iSAGE)” [grant number 679302]; and the Rural & Environment Science & Analytical Services Division of the Scottish Government. BC3 is supported by the Basque Government through the BERC 2018–2021 program and by Spanish Ministry of Economy and Competitiveness MINECO through BC3 María de Maeztu excellence accreditation MDM-2017-0714. Agustin del Prado is supported by the Ramon y Cajal Programme. We would like to thank all the people who provided the data which made this work possible. In particular, Professor Wolfgang Schmidt, for data from the Experimental Botanical Garden of Göttingen University. Also the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-term Experiments National Capability (LTE-NCG) is supported by the UK Biotechnology and Biological Sciences Research Council and the Lawes Agricultural Trust.en
dc.description.statusPeer revieweden
dc.format.extent984319
dc.identifier148459904
dc.identifierdec5f3f3-2017-424e-b466-e364db856afa
dc.identifier000498063900020
dc.identifier85073567711
dc.identifier.citationDellar, M, Topp, C, Pardo, G, del Prado, A, Fitton, N, Holmes, D, Banos, G & Wall, E 2019, 'Empirical and dynamic approaches for modelling the yield and N content of European grasslands', Environmental Modelling and Software, vol. 122, 104562. https://doi.org/10.1016/j.envsoft.2019.104562en
dc.identifier.doi10.1016/j.envsoft.2019.104562
dc.identifier.issn1364-8152
dc.identifier.urihttps://hdl.handle.net/2164/13146
dc.identifier.vol122en
dc.language.isoeng
dc.relation.ispartofEnvironmental Modelling and Softwareen
dc.subjectSDG 2 - Zero Hungeren
dc.subjectgrasslandsen
dc.subjectyielden
dc.subjectnitrogenen
dc.subjectmodellingen
dc.subjectGrasslandsen
dc.subjectCALIBRATIONen
dc.subjectPERFORMANCEen
dc.subjectSENSITIVITYen
dc.subjectNitrogenen
dc.subjectMEADOWen
dc.subjectBIOMASSen
dc.subjectFERTILIZERen
dc.subjectUNCERTAINTYen
dc.subjectNITROGENen
dc.subjectSOILen
dc.subjectYielden
dc.subjectModellingen
dc.subjectIMPACTSen
dc.subjectQH301 Biologyen
dc.subject.lccQH301en
dc.titleEmpirical and dynamic approaches for modelling the yield and N content of European grasslandsen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dellar_etal_Empirical_and_dynamic_VOR.pdf
Size:
961.25 KB
Format:
Adobe Portable Document Format

Collections