University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

TE-SSL : Time and Event-aware Self Supervised Learning for Alzheimer’s Disease Progression Analysis

dc.contributor.authorThrasher, Jacob
dc.contributor.authorDevkota, Alina
dc.contributor.authorTafti, Ahmed P.
dc.contributor.authorBhattarai, Binod
dc.contributor.authorGyawali, Prashnna
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.date.accessioned2025-03-20T11:57:01Z
dc.date.available2025-03-20T11:57:01Z
dc.date.issued2024-10-23
dc.descriptionAcknowledgments. This research was supported by West Virginia Higher Education Policy Commission’s Research Challenge Grant Program 2023 and DARPA/FIU AI-CRAFT grant. Data collection and sharing for the Alzheimer’s Disease Neuroimaging Initiative (ADNI) is funded by the National Institute on Aging (National Institutes of Health Grant U19 AG024904). The grantee organization is the Northern California Institute for Research and Education. In the past, ADNI has also received funding from the National Institute of Biomedical Imaging and Bioengineering, the Canadian Institutes of Health Research, and private sector contributions through the Foundation for the National Institutes of Health (FNIH) including generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics.en
dc.format.extent1863841
dc.identifier302369518
dc.identifiercc25e564-b425-4536-aef0-43aa722cac96
dc.identifier85208193092
dc.identifier.citationThrasher, J, Devkota, A, Tafti, A P, Bhattarai, B & Gyawali, P 2024, TE-SSL : Time and Event-aware Self Supervised Learning for Alzheimer’s Disease Progression Analysis . in Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 : 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part XII. Lecture Notes in Computer Science, no. 15012, Springer Nature, pp. 324-333, MICCAI 2024, Marrakesh, Morocco, 6/10/24. https://doi.org/10.1007/978-3-031-72390-2_31en
dc.identifier.citationconferenceen
dc.identifier.doi10.1007/978-3-031-72390-2_31
dc.identifier.isbn978-3-031-72389-6
dc.identifier.isbn978-3-031-72390-2
dc.identifier.issn0302-9743
dc.identifier.otherORCID: /0000-0001-7171-6469/work/180763437
dc.identifier.urihttps://hdl.handle.net/2164/25166
dc.identifier.urlhttps://www.scopus.com/pages/publications/85208193092en
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.ispartofMedical Image Computing and Computer Assisted Intervention – MICCAI 2024en
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.subjectAlzheimer’sen
dc.subjectSurvival Analysisen
dc.subjectSelf-supervised learningen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectR Medicineen
dc.subject.lccQA75en
dc.subject.lccRen
dc.titleTE-SSL : Time and Event-aware Self Supervised Learning for Alzheimer’s Disease Progression Analysisen
dc.typeConference itemen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Trasher_etal_MICCAI_TE_SSL_Time_AAM.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

Collections