A topological data analysis based classification method for multiple measurements
| dc.contributor.author | Riihimäki, Henri | |
| dc.contributor.author | Chachólski, Wojciech | |
| dc.contributor.author | Theorell, Jakob | |
| dc.contributor.author | Hillert, Jan | |
| dc.contributor.author | Ramanujam, Ryan | |
| dc.contributor.institution | University of Aberdeen.Mathematical Science | en |
| dc.date.accessioned | 2020-09-01T08:10:02Z | |
| dc.date.available | 2020-09-01T08:10:02Z | |
| dc.date.issued | 2020-07-29 | |
| dc.description | HR was partly supported by a collaboration agreement between the University of Aberdeen and EPFL. WC was partially supported by VR 2014-04770 and Wallenberg AI, Autonomous System and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation, Göran Gustafsson Stiftelse. JT is fully funded by the Wenner-Gren Foundation. JH is partially supported by VR K825930053. RR is partially supported by MultipleMS. The collaboration agreement between EPFL and University of Aberdeen played a role in the design of the neuron spiking analysis and in providing the data required, i.e. the neuronal network and the spiking activity. Open access funding provided by Karolinska Institute. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 18 | |
| dc.format.extent | 2486352 | |
| dc.identifier | 175012510 | |
| dc.identifier | 62e79482-c4fe-4b99-9c0a-ce4d8e55b305 | |
| dc.identifier | 85088852643 | |
| dc.identifier | 32727348 | |
| dc.identifier | 000559095100002 | |
| dc.identifier.citation | Riihimäki, H, Chachólski, W, Theorell, J, Hillert, J & Ramanujam, R 2020, 'A topological data analysis based classification method for multiple measurements', BMC Bioinformatics, vol. 21, 336. https://doi.org/10.1186/s12859-020-03659-3 | en |
| dc.identifier.doi | 10.1186/s12859-020-03659-3 | |
| dc.identifier.issn | 1471-2105 | |
| dc.identifier.other | RIS: urn:239823C9244D4A497C335371DDA0FC09 | |
| dc.identifier.other | RIS: Riihimäki2020 | |
| dc.identifier.uri | https://hdl.handle.net/2164/15044 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85088852643&partnerID=8YFLogxK | en |
| dc.identifier.vol | 21 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | BMC Bioinformatics | en |
| dc.subject | Topological data analysis | en |
| dc.subject | machine learning | en |
| dc.subject | multiple measurement analysis | en |
| dc.subject | Machine learning | en |
| dc.subject | Multiple measurement analysis | en |
| dc.subject | Trees/anatomy & histology | en |
| dc.subject | Humans | en |
| dc.subject | Rats | en |
| dc.subject | Support Vector Machine | en |
| dc.subject | Machine Learning | en |
| dc.subject | Algorithms | en |
| dc.subject | Animals | en |
| dc.subject | Lasers | en |
| dc.subject | Computer Simulation | en |
| dc.subject | Data Analysis | en |
| dc.subject | QA Mathematics | en |
| dc.subject | Applied Mathematics | en |
| dc.subject | Molecular Biology | en |
| dc.subject | Structural Biology | en |
| dc.subject | Biochemistry | en |
| dc.subject | Computer Science Applications | en |
| dc.subject.lcc | QA | en |
| dc.title | A topological data analysis based classification method for multiple measurements | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Riihimaki_etal_BMCbio_Topological_data_VOR.pdf
- Size:
- 2.37 MB
- Format:
- Adobe Portable Document Format
