University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

LogEvent2vec : LogEvent-to-vector based anomaly detection for large-scale logs in internet of things

dc.contributor.authorWang, Jin
dc.contributor.authorTang, Yangning
dc.contributor.authorHe, Shiming
dc.contributor.authorZhao, Changqing
dc.contributor.authorSharma, Pradip Kumar
dc.contributor.authorAlfarraj, Osama
dc.contributor.authorTolba, Amr
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Cybersecurity and Privacyen
dc.date.accessioned2020-07-08T10:25:01Z
dc.date.available2020-07-08T10:25:01Z
dc.date.issued2020-05
dc.descriptionFunding: This work was funded by the National Natural Science Foundation of China (Nos. 61802030), the Research Foundation of Education Bureau of Hunan Province, China (No. 19B005), and the International Cooperative Project for “Double First-Class”, CSUST (No. 2018IC24), the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education (No. JZNY201905), the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology (No. 2018WLZC003). This work was funded by the Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia. Acknowledgments: We thank Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia, for funding this research. We thank Francesco Cauteruccio for proofreading this paper.en
dc.description.statusPeer revieweden
dc.format.extent19
dc.format.extent1043977
dc.identifier171373082
dc.identifierba2d5267-8daf-4613-a839-e778b24cc9a6
dc.identifier85084058085
dc.identifier32357404
dc.identifier000537106200015
dc.identifier.citationWang, J, Tang, Y, He, S, Zhao, C, Sharma, P K, Alfarraj, O & Tolba, A 2020, 'LogEvent2vec : LogEvent-to-vector based anomaly detection for large-scale logs in internet of things', Sensors (Switzerland), vol. 20, no. 9, 2451. https://doi.org/10.3390/s20092451en
dc.identifier.doi10.3390/s20092451
dc.identifier.iss9en
dc.identifier.issn1424-8220
dc.identifier.otherORCID: /0000-0001-6620-9083/work/76976513
dc.identifier.urihttps://hdl.handle.net/2164/14671
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85084058085&partnerID=8YFLogxKen
dc.identifier.vol20en
dc.language.isoeng
dc.relation.ispartofSensors (Switzerland)en
dc.subjectDevice managementen
dc.subjectIoTen
dc.subjectLog anomaly detectionen
dc.subjectLog eventen
dc.subjectLog templateen
dc.subjectWord2vecen
dc.subjectlog anomaly detectionen
dc.subjectlog templateen
dc.subjectlog eventen
dc.subjectword2vecen
dc.subjectdevice managementen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectAnalytical Chemistryen
dc.subjectInstrumentationen
dc.subjectAtomic and Molecular Physics, and Opticsen
dc.subjectElectrical and Electronic Engineeringen
dc.subjectBiochemistryen
dc.subject.lccQA75en
dc.titleLogEvent2vec : LogEvent-to-vector based anomaly detection for large-scale logs in internet of thingsen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Wang_etal_sensors_LogEvent2vec_VOR.pdf
Size:
1019.51 KB
Format:
Adobe Portable Document Format

Collections