University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Decoding individual differences in self-prioritization from the resting-state functional connectome

dc.contributor.authorZhang, Yongfa
dc.contributor.authorWang, Fei
dc.contributor.authorSui, Jie
dc.contributor.institutionUniversity of Aberdeen.Psychologyen
dc.date.accessioned2023-07-04T14:04:01Z
dc.date.available2023-07-04T14:04:01Z
dc.date.issued2023-08-01
dc.descriptionFunding Information: Fei Wang acknowledges the financial support from The Research Project of Shanghai Science and Technology Commission ( 20dz2260300 ). Jie Sui acknowledges the financial support from the Leverhulme Trust ( RPG-2019–010 ).en
dc.description.statusPeer revieweden
dc.format.extent10
dc.format.extent2024209
dc.identifier250482909
dc.identifierd080f8cf-4d96-4195-a248-ff6ba881d3aa
dc.identifier85161266825
dc.identifier.citationZhang, Y, Wang, F & Sui, J 2023, 'Decoding individual differences in self-prioritization from the resting-state functional connectome', Neuroimage, vol. 276, 120205. https://doi.org/10.1016/j.neuroimage.2023.120205en
dc.identifier.doi10.1016/j.neuroimage.2023.120205
dc.identifier.issn1053-8119
dc.identifier.otherunpaywall: 10.1016/j.neuroimage.2023.120205
dc.identifier.otherORCID: /0000-0002-4031-4456/work/138105455
dc.identifier.urihttps://hdl.handle.net/2164/21102
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85161266825&partnerID=8YFLogxKen
dc.identifier.vol276en
dc.language.isoeng
dc.relation.ispartofNeuroimageen
dc.subjectFunctional connectivityen
dc.subjectMachine learningen
dc.subjectResting stateen
dc.subjectSelf-prioritization effecten
dc.subjectfMRIen
dc.subjectBF Psychologyen
dc.subjectNeurologyen
dc.subjectCognitive Neuroscienceen
dc.subject.lccBFen
dc.titleDecoding individual differences in self-prioritization from the resting-state functional connectomeen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Wang_etal_NI_Decoding_individual_differences_VOR.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format

Collections