Deep learning techniques for in-core perturbation identification and localization of time-series nuclear plant measurements
| dc.contributor.author | Papaoikonomou, Antonios | |
| dc.contributor.author | Wingate, James | |
| dc.contributor.author | Verma, Vasudha | |
| dc.contributor.author | Durrant, Aiden | |
| dc.contributor.author | Ioannou, George | |
| dc.contributor.author | Papagiannis, Tasos | |
| dc.contributor.author | Yu, Miao | |
| dc.contributor.author | Alexandridis, Georgios | |
| dc.contributor.author | Dokhane, Abdelhamid | |
| dc.contributor.author | Leontidis, Georgios | |
| dc.contributor.author | Kollias, Stefanos | |
| dc.contributor.author | Stafylopatis, Andreas | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.contributor.institution | University of Aberdeen.Centre for Energy Transition | en |
| dc.date.accessioned | 2022-08-22T11:57:01Z | |
| dc.date.available | 2022-08-22T11:57:01Z | |
| dc.date.issued | 2022-12-01 | |
| dc.description | The research conducted has been made possible through funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316 for the “CORe Monitoring Techniques And EXperimental Validation And Demonstration (CORTEX)” Horizon 2020 project, 2017-2021. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 10 | |
| dc.format.extent | 2181924 | |
| dc.identifier | 218609288 | |
| dc.identifier | ad825dd9-64ff-4236-8203-babb7c58a794 | |
| dc.identifier | 85136485449 | |
| dc.identifier.citation | Papaoikonomou, A, Wingate, J, Verma, V, Durrant, A, Ioannou, G, Papagiannis, T, Yu, M, Alexandridis, G, Dokhane, A, Leontidis, G, Kollias, S & Stafylopatis, A 2022, 'Deep learning techniques for in-core perturbation identification and localization of time-series nuclear plant measurements', Annals of Nuclear Energy, vol. 178, 109373. https://doi.org/10.1016/j.anucene.2022.109373 | en |
| dc.identifier.doi | 10.1016/j.anucene.2022.109373 | |
| dc.identifier.issn | 0306-4549 | |
| dc.identifier.other | ORCID: /0000-0001-6671-5568/work/117768416 | |
| dc.identifier.other | ORCID: /0000-0002-8375-4523/work/148505719 | |
| dc.identifier.uri | https://hdl.handle.net/2164/19087 | |
| dc.identifier.vol | 178 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Annals of Nuclear Energy | en |
| dc.subject | 2040 Data and Artificial Intelligence | en |
| dc.subject | Convolutional neural networks | en |
| dc.subject | Recurrent neural networks | en |
| dc.subject | deep learning | en |
| dc.subject | Perturbation identification | en |
| dc.subject | perturbation localization | en |
| dc.subject | self-supervised domain adaptation | en |
| dc.subject | SIMULATE-3K | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject | European Commission | en |
| dc.subject | 754316 | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Deep learning techniques for in-core perturbation identification and localization of time-series nuclear plant measurements | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Papaoikonomou_etal_Deep_learning_techniques_VOR.pdf
- Size:
- 2.08 MB
- Format:
- Adobe Portable Document Format
