University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Deep learning and hyperparameter optimization for assessing one’s eligibility for a subcutaneous implantable cardioverter-defibrillator

dc.contributor.authorDunn, Anthony J.
dc.contributor.authorConiglio, Stefano
dc.contributor.authorElRefai, Mohamed
dc.contributor.authorRoberts, Paul R.
dc.contributor.authorWiles, Benedict M.
dc.contributor.authorZemkoho, Alain B.
dc.contributor.institutionUniversity of Aberdeen.Medical Sciencesen
dc.date.accessioned2023-10-31T14:53:01Z
dc.date.available2023-10-31T14:53:01Z
dc.date.issued2023-09
dc.descriptionOpen access funding provided by Università degli studi di Bergamo within the CRUI-CARE Agreement. The work of Anthony J. Dunn is jointly funded by Decision Analysis Services Ltd andf EPSRC through the studentship with Reference EP/R513325/1. The work of Alain B. Zemkoho is supported by the EPSRC grant EP/V049038/1. The work of Stefano Coniglio and Alain B. Zemkoho is supported by The Alan Turing Institute under the EPSRC grants EP/N510129/1 and EP/W037211/1.en
dc.description.statusPeer revieweden
dc.format.extent27
dc.format.extent2182939
dc.identifier281642847
dc.identifier36078245-cd89-4833-8992-a6439ce31a3b
dc.identifier85160251694
dc.identifier.citationDunn, A J, Coniglio, S, ElRefai, M, Roberts, P R, Wiles, B M & Zemkoho, A B 2023, 'Deep learning and hyperparameter optimization for assessing one’s eligibility for a subcutaneous implantable cardioverter-defibrillator', Annals Of Operations Research, vol. 328, pp. 309-335. https://doi.org/10.1007/s10479-023-05326-1en
dc.identifier.doi10.1007/s10479-023-05326-1
dc.identifier.issn0254-5330
dc.identifier.otherORCID: /0000-0002-1226-5335/work/146067848
dc.identifier.urihttps://hdl.handle.net/2164/22072
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85160251694&partnerID=8YFLogxKen
dc.identifier.vol328en
dc.language.isoeng
dc.relation.ispartofAnnals Of Operations Researchen
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subjectDeep learningen
dc.subjectMachine learningen
dc.subjectOptimizationen
dc.subjectSubcutaneous implantable cardioverter defibrillatorsen
dc.subjectR Medicineen
dc.subjectGeneral Decision Sciencesen
dc.subjectManagement Science and Operations Researchen
dc.subjectEngineering and Physical Sciences Research Council (EPSRC)en
dc.subjectEP/R513325/1en
dc.subjectEP/V049038/1en
dc.subjectEP/N510129/1en
dc.subjectEP/W037211/1en
dc.subject.lccRen
dc.titleDeep learning and hyperparameter optimization for assessing one’s eligibility for a subcutaneous implantable cardioverter-defibrillatoren
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dunn_etal_AOR_Deep_Learning_and_VOR.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format

Collections